Constructions in minimal dynamics and applications to the classification of C^*-algebras

Karen Strung
Institute of Mathematics of the Czech Academy of Sciences
krstrung@gmail.com

Robin Deeley
University of Colorado, Boulder
robin.deeley@gmail.com

Ian Putnam
University of Victoria
ifputnam@uvic.ca

What abelian groups can arise as the K-theory of C^*-algebras arising from minimal dynamical systems? In joint work with Robin Deeley and Ian Putnam, we completely characterize the K-theory of the crossed product of a space X with finitely generated K-theory by an action of the integers and show that crossed products by a minimal homeomorphisms exhaust the range of these possible K-theories. We also investigate the K-theory and the Elliott invariants of orbit-breaking algebras. We show that given arbitrary countable abelian groups G_0 and G_1 and any Choquet simplex Δ with finitely many extreme points, we can find a minimal orbit-breaking relation such that the associated C^*-algebra has K-theory given by this pair of groups and tracial state space affinely homeomorphic to Δ. These results have important applications to the Elliott classification program for C^*-algebras. In particular, we make a step towards determining the range of the Elliott invariant of the C^*-algebras associated to étale equivalence relations.