Strongly Deza graphs

Elena V. Konstantinova
Sobolev Institute of Mathematics, Novosibirsk State University, Russia
e_konsta@math.nsc.ru
Saieed Akbari
Sharif University of Technology, Iran
s_akbari@sharif.edu
Vladislav V. Kabanov
Krasovskii Institute of Mathematics and Mechanics, Russia
vvk@imm.uran.ru
Willem H. Haemers
Tilburg University, The Netherlands
Haemers@tilburguniversity.edu
Mohammad Ali Hosseinzadeh
Amol University of Special Modern Technologies, Iran
hosseinzadeh@ausmt.ac.ir

A Deza graph G with parameters (n, k, b, a) is a k-regular graph of order n for which the number of common neighbours of two vertices takes just two values, b or a, where $b \geq a$. Moreover, G is not the complete graph or the edgeless graph. Deza graphs were introduced in [3], and the name was given in [4], where the basics of Deza graph theory were founded and different constructions of Deza graphs were presented. Strongly regular graphs are a particular case of Deza graphs.

Deza graphs can be considered in terms of matrices. Let G be a graph with n vertices, and M be its adjacency matrix. Then G is a Deza graph with parameters (n, k, b, a) if and only if

$$M^2 = aA + bB + kI$$

for some symmetric $(0, 1)$-matrices A and B such that $A + B + I = J$, where J is the all ones matrix and I is the identity matrix. Graphs G_A and G_B with matrices A and B are called the children of G.

Definition. A Deza graph is called a strongly Deza graph if its children are strongly regular graphs.
Theorem 1. [1, Theorem 3.2] Let G be a Deza graph with parameters (n, k, b, a), $b > a$. Let M, A, B be the adjacency matrices of G and its children, respectively. If $\theta_1, \theta_2, \ldots, \theta_n$ are the eigenvalues of M, then

(i) the eigenvalues of A are

$$\alpha = \frac{b(n - 1) - k(k - 1)}{b - a}, \quad \alpha_2 = \frac{k - b - \theta_2^2}{b - a}, \ldots, \quad \alpha_n = \frac{k - b - \theta_n^2}{b - a};$$

(ii) the eigenvalues of B are

$$\beta = \frac{a(n - 1) - k(k - 1)}{a - b}, \quad \beta_2 = \frac{k - a - \theta_2^2}{a - b}, \ldots, \quad \beta_n = \frac{k - a - \theta_n^2}{a - b}.$$

By Theorem above, a strongly Deza graph has at most three distinct absolute values of its eigenvalues.

Theorem 2. Suppose G is a strongly Deza graph with parameters (n, k, b, a). Then

(i) G has at most five distinct eigenvalues.

(ii) If G has two distinct eigenvalues, then $a = 0$, $b = k - 1 \geq 1$, and G is a disjoint union of cliques of order $k + 1$.

(iii) If G has three distinct eigenvalues, then G is a strongly regular graph with parameters (n, k, λ, μ), where $\{\lambda, \mu\} = \{a, b\}$, or G is disconnected and each component is a strongly regular graph with parameters (v, k, b, b), or each component is a complete bipartite graph $K_{k,k}$ with $k \geq 2$.

If G is a bipartite graph, then the halved graphs of G are two connected components of the graph on the same vertex set, where two vertices are adjacent whenever they are at distance two in G.

The next theorem gives a spectral characterization of strongly Deza graphs.

Theorem 3. Let G be a connected Deza graph with parameters (n, k, b, a), $b > a$, and it has at most three distinct absolute values of its eigenvalues.

(i) If G is a non-bipartite graph, then G is a strongly Deza graph.

(ii) If G is a bipartite graph, then either G is a strongly Deza graph or its halved graphs are strongly Deza graphs.

We also discuss some results on distance-regular strongly Deza graphs. The main results of the talk are presented in [2]. The work of the speaker is supported by the Mathematical Center in Akademgorodok, the agreement with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613.
References

