On the boundary of the basins of attraction for the secant method applied to polynomials

Xavier Jarque
Universitat de Barcelona
xavier.jarque@ub.edu

Antonio Garijo
Universitat Rovira i Virgili
antonio.garijo@urv.cat

Laura Gardini
University of Urbino
laura.gardini@uniurb.it

We investigate the discrete dynamical system S defined on \mathbb{R}^2 given by the secant method applied to a real polynomial p. Every simple root α of p has associated its basin of attraction $A(\alpha)$ formed by the set of points converging under S towards α and $A^*(\alpha)$ its immediate basin of attraction.

We focus on the structure and dynamical behaviour of the boundary of the immediate basin of attraction of a root of p. We call *external* roots of p the smallest and largest value and *internal* all the rest. If α is an internal root of p then $\partial A^*(\alpha)$ is given by the stable manifold of a 4-cycle. Moreover we show that, under some hypothesis, those internal basins are simply connected.