A note on the multiple fractional integrals defined on the product of quasi-metric measure spaces

Tsira Tsanava
Georgian Technical University
ts.tsanava@gtu.ge

Vakhtang Kokilashvili
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University
vakhtang.kokilashvili@tsu.ge

A complete characterization of a vector-measure \( \vec{\mu} = (\mu_1, \ldots, \mu_n) \) governing the boundedness of the multiple fractional integral operator

\[
I^{\vec{\gamma}} f(x_1, \ldots, x_n) = \int_{X_1} \cdots \int_{X_n} \frac{f(y_1, \ldots, y_n) d\mu_1(y_1) \cdots d\mu_n(y_n)}{\prod_{j=1}^n (d_j(x_j, y_j))^{1-\gamma_j}}, \quad \vec{\gamma} = (\gamma_1, \ldots, \gamma_n)
\]

from one mixed norm Lebesgue space \( L^{p_1}_{\vec{\mu}} \) to another one \( L^{q_1}_{\vec{\mu}} \) is obtained, where \((X_i, d_i, \mu_i), \ i = 1, \ldots, n, \) are quasi-metric measure spaces (spaces of nonhomogeneous type).

Acknowledgement. The work was supported by the Shota Rustaveli National Foundation grant of Georgia (Project No. DI-18-118).