On the rank of pseudo walk matrices

Alexander Farrugia

G.F. Abela Junior College, University of Malta
alex.farrugia@um.edu.mt

Abstract

In the literature, the walk matrix W_b associated with a graph G having vertex set $V(G)$ is the matrix with columns $b, A b, A^2 b, \ldots, A^{r-1} b$ that enumerates the number of all possible walks on G of length $0, 1, 2, \ldots, r-1$ starting from each vertex of G and ending at any of the vertices indicated by b. We generalize walk matrices further to obtain pseudo walk matrices W_v having any walk vector v. For any subset S of $V(G) \times V(G)$, the total number of walks $N_0(S), N_1(S), N_2(S), \ldots$ of length $0, 1, 2, \ldots$ in G that start from vertex i and end at vertex j for all $(i, j) \in S$ is considered. Various results on such pseudo walk matrices are presented, particularly related to their rank. The matrix rank of pseudo walk matrices allows the consideration of controllable and recalcitrant pairs.