Constructive Method to Solving 3D Navier - Stokes Equations

Alexander Koptev
Admiral Makarov state university of maritime and inland Shipping,
Saint-Petersburg
Koptevav@gumrf.ru

Abstract

We consider 3D Navier – Stokes equations for motion of incompressible media. This equations are of mathematical interest and have a lot of applications to practical problems. For today many aspects connected with the Navier – Stokes equations have been studied not enough and need more profound investigation [1-2]. Main unresolved problem is the lack of a constructive method of solution. How to resolve the Navier – Stokes equations while preserving all nonlinear terms is the question that needs to be addressed.

The author proposes an approach to this problem the essence of which is to reduce the basic problem of solving the Navier – Stokes equations to a set of simple tasks. We face to five more simple tasks that you need to consistently allow. Each of the individual Navier – Stokes equations must be reduced to a free divergent form and integrated. Resulting equality can be converted so as to exclude some nonlinear and non-divergent terms. As the result we arrive to nine equations which link main unknowns \(u, v, w, p \), associated unknowns \(\Psi_i \) where \(i = 1, 2, \ldots, 15 \) and an arbitrary additive functions in three variables \(\alpha_i, \beta_i, \gamma_i, \delta_i \). Considered together these nine ratios provide the first integral of 3D Navier – Stokes equations [3]. The well-known integrals of Bernoulli, Euler - Bernoulli and Lagrange - Cauchy are its special cases [4]. Four of the nine obtained equations represent expressions for basic unknowns. So they determine the overall structure of the solutions. The remaining five equations can be resolved relative to six associated unknowns \(\Psi_j \) where \(j = 10, 11, \ldots, 15 \) only if two conditions of compatibility are hold. They reduce to two fifth order equations with respect to nine unknown \(\Psi_k \) where \(k = 1, 2, \ldots, 9 \). Each set of functions \(\Psi_k \) satisfying a given system determines exact solution of the Navier - Stokes equations. To complete the solution you need to find the six remaining associated unknowns \(\Psi_j \), where \(k = 10, 11, \ldots, 15 \). Three of the last functions can be set arbitrarily whereas the remaining three are defined as solution of linear inhomogeneous equations.

As a result all values presents of the structure formula for main unknowns are defined and these unknowns are easy to find. Some exact
solutions constructed in this way are given in [5-6]. A similar approach can be applied to construct solutions of the Euler equations for case of motion for inviscid incompressible media. In all relationships it is enough to put $\frac{1}{Re} = 0$.

References

