Factorizations of infinite graphs

Simone Costa
University of Brescia
simone.costa@unibs.it

Tommaso Traetta
University of Brescia
tommaso.traetta@unibs.it

Let $\mathcal{F} = \{F_\alpha : \alpha \in \mathcal{A}\}$ be a family of infinite graphs. The Factorization Problem $FP(\mathcal{F}, \Lambda)$ asks whether \mathcal{F} can be realized as a factorization of a given infinite graph Λ, namely, whether there is a factorization $\mathcal{G} = \{\Gamma_\alpha : \alpha \in \mathcal{A}\}$ of Λ such that each Γ_α is a copy of F_α.

Inspired by the results on regular 1-factorizations of infinite complete graphs [1] and on the resolvability of infinite designs [4], we study this problem when Λ is either the Rado graph R or the complete graph K_\aleph of infinite order \aleph. When \mathcal{F} is a countable family, we show that $FP(\mathcal{F}, R)$ is solvable if and only if each graph in \mathcal{F} has no finite dominating set. Generalizing the existence result of [2], we also prove that $FP(\mathcal{F}, K_\aleph)$ admits a solution whenever the cardinality \mathcal{F} coincides with the order and the domination numbers of its graphs.

Finally, in the case of countable complete graphs, we show some non-existence results when the domination numbers of the graphs in \mathcal{F} are finite.

References

