Piecewise-regular approximation of maps into real algebraic sets

Marcin Bilski
Jagiellonian University
marcin.bilski@im.uj.edu.pl

Wojciech Kucharz
Jagiellonian University
wojciech.kucharz@im.uj.edu.pl

A real algebraic set W of dimension m is said to be uniformly rational if each of its points has a Zariski open neighborhood which is biregularly isomorphic to a Zariski open subset of \mathbb{R}^m. Let l be any nonnegative integer. It turns out that every map of class C^l from a compact subset of a real algebraic set into a uniformly rational real algebraic set can be approximated in the C^l topology by piecewise-regular maps of class C^k, where k is an arbitrary integer greater than or equal to l.