Characterizing isomorphism classes of Latin squares by fractal dimensions of image patterns

Raúl M. Falcón
Universidad de Sevilla
rafalgon@us.es

Based on the construction of pseudo-random sequences arisen from a given Latin square, Dimitrova and Markovski [1] described in 2007 a graphical representation of quasigroups by means of fractal image patterns. The recognition and analysis of such patterns have recently arisen [2,3] as an efficient new approach for classifying Latin squares into isomorphism classes. This talk delves into this topic by focusing on the use of the differential box-counting method for determining the mean fractal dimension of the homogenized standard sets associated to these fractal image patterns. It constitutes a new Latin square isomorphism invariant which is analyzed in this talk for characterizing isomorphism classes of non-idempotent Latin squares in an efficient computational way.

References:

