Hyperbolic quadratic eigenvalue problem and frequency isolation

Suzana Miodragović
University of Osijek
ssusic@mathos.hr

Ninoslav Truhar
University of Osijek
ntruhar@mathos.hr

Julio Moro
University Carlos III, Madrid
jmoro@math.uc3m.es

Frenando de Teran
University Carlos III, Madrid
fteran@math.uc3m.es

The solution of the forced system undergo large oscillations whenever some eigenvalue of the corresponding quadratic eigenvalue problem

\[(\lambda^2M + \lambda C + K)x = 0, \quad 0 \neq x \in \mathbb{C}^n,\]

is close to the frequency of the external force. One way to avoid resonance is to modify matrices \(M\), \(C\) and \(K\) in such a way that the new system has no eigenvalues close to these frequencies. This frequency isolation problem is considered for the hyperbolic QEP.