Approximation of the two variables Discontinuous Functions by Discontinuous Interlination Splines using Triangular Elements

Iuliia Pershyna

yuliapershina78@gmail.com

D.Sc. in Physical and Mathematical Sciences
Professor of Department of Information Computer Technologies and Mathematics

Ukrainian Engineering Pedagogics Academy, Kharkov, Ukraine
Introduction

My work is devoted to solving the plane problem of radon computed tomography using the inhomogeneity of the internal structure of a two-dimensional body. For this purpose, it is advisable to use interlinear operators, since these operators restore (possibly approximated) functions by their known traces on a given system of lines. They provide a method to construct operators whose integrals from the lines (linear integrals) will be equal to integrals from the most renewable function. I.e. interlinearation is a mathematical apparatus, naturally related to the problem of restoring the characteristics of objects according to their known projections.
Let the function $f(x, y)$ be a discontinuous function of two variables in the domain D. We will assume that the domain D is divided into arbitrary triangles. The sides of triangles do not intersect. The function $f(x, y)$ has first-order discontinuities at the boundaries between these triangular elements (not necessarily all). The experimental data are unilateral traces of a function along a system of the given lines. Based on these data, let us construct an analytic formula of an unknown function (i.e. the discontinuous interlination operator).
Consider a triangular element $T_{ij}, i = 1, n, j = 1, m$.

Let's us consider given:

- Function traces $f(x, y)$ on the straight line $x = x_i$ (on the right and on the left of the line respectively):

 $$\varphi_{p_i}(y) = \lim_{x \to x_i^+} f(x, y), \quad \varphi_{m_i}(y) = \lim_{x \to x_i^-} f(x, y);$$

 $$\varphi_{p_{ij}} = \varphi_{p_i}(y_j) = \lim_{x \to x_i^+} \lim_{y \to y_j^+} f(x, y),$$

 $$\varphi_{m_{ij}} = \varphi_{m_i}(y_j) = \lim_{x \to x_i^-} \lim_{y \to y_j^-} f(x, y).$$
• Function traces on the straight line \(y = y_j \) (on the right and on the left of the line respectively).

Formulas are developed similarly to the traces along the line \(x = x_i \).

• Function traces on the straight line

\[
y = \frac{(y_j - y_{j+1})(x - x_i)}{x_{i+1} - x_i} + y_{j+1}
\]

(on the right and on the left of the line respectively):

\[
\eta m_{ij}(x) = f\left(x, \frac{(y_j - y_{j+1})(x - x_i)}{x_{i+1} - x_i} + y_{j+1} - 0\right),
\]

\[
\eta p_{ij}(x) = f\left(x, \frac{(y_j - y_{j+1})(x - x_i)}{x_{i+1} - x_i} + y_{j+1} + 0\right), \quad \eta p_{ij} = \eta m_{ij}(x) = f\left(x_i + 0, y_{j+1} - 0\right),
\]

or

\[
\eta m_{ij}(y) = f\left(\frac{(y_j - y)(x_i - x_{i+1})}{y_{j+1} - y} + x_{i+1} + 0, y\right), \quad \eta p_{ij}(y) = f\left(\frac{(y_j - y)(x_i - x_{i+1})}{y_{j+1} - y} + x_{i+1} - 0, y\right),
\]
Theorem 1. Let the traces of the function $f(x, y)$ satisfy the conditions

$$\psi p_j(x_i) = \varphi p_i(y_j), \quad \eta m_{ij}(x_i) = \varphi p_i(y_{j+1}), \quad \eta m_{ij}(x_{i+1}) = \psi p_j(x_{i+1}).$$

(1)

That is, the tracks at the intersection points of the lines coincide. Then operator

$$O f(x, y) = \omega_{3ij}(x, y) \left(\psi p_j(x) + \varphi p_i(y) - \varphi p_i(y_j) \right) + \omega_{2j}(y) \left(\eta m_{ij}(x) - \varphi p_i(y_j) \right) + \frac{\omega_{2j}(y)}{\omega_{1i}(A_{12})} \left(\eta m_{ij}(x) - \varphi p_i(y_j) \right)$$

$$- \varphi p_i \left(y_j + \frac{(x-x_{i+1})(y_{j+1}-y_j)}{(x_i-x_{i+1})} \right) + \varphi p_i(y) + \frac{\omega_{1i}(x)}{\omega_{1i}(A_{13})} \times$$

$$\times \eta m_{ij} \left(x_{i+1} + \frac{(y-y_j)(x_i-x_{i+1})}{(y_{j+1}-y_j)} \right) - \psi p_j \left(x_{i+1} + \frac{(y-y_j)(x_i-x_{i+1})}{(y_{j+1}-y_j)} \right) + \psi p_j(x)$$

(2)

is the operator of interlination of a function $f(x, y)$ on $\partial T_i: O f(x, y)|_{\partial T_i} = f(x, y)|_{\partial T_i}$.
Theorem 2. If $f(x, y)$ is a continuous function together with its partial derivatives up to the second order inclusively inside a triangular element T_{ij}, then for the residual $Rf(x, y) = (I - O)f$ equals

$$Rf(x, y) =$$

$$= \frac{\omega_{3ij}(x, y)}{\omega_{3ij}(A_{12})} \int_{x_i}^{x} \int_{y_j}^{y} f^{(1,1)}(u, v) dudv + \frac{\omega_{2j}(y)}{\omega_{2j}(A_{13})} \int_{x_i}^{x} \int_{y_j}^{y} \frac{(x-x_{i+1})(y_{j+1}-y_j)}{x_i-x_{i+1}} f^{(1,1)}(u, v) dudv +$$

$$+ \frac{\omega_{l_i}(x)}{\omega_{l_i}(A_{23})} \int_{x_{i+1}}^{x} \int_{y_j}^{y} f^{(1,1)}(u, v) dudv, (x, y) \in T_{ij}.$$
Theorem 3. Let $f(x, y) \in L^1_{\infty}(T_{ij})$, $\forall (x, y) \in T_{ij}$, then there are the following error estimates $\forall (x, y) \in T_{ij}$:

$$
|Rf(x, y)| \leq \left\| f(1,1)(x, y) \right\|_{L_{\infty}(T_{ij})}(x - x_i)(y - y_j) \left(\frac{x - x_{i+1}}{x_i - x_{i+1}} - \frac{y - y_{j+1}}{y_j - y_{j+1}} \right),
$$

where $L^1_{\infty}(T_{ij}) = \lim_{p \to \infty} L_p(T_{ij}) = \sup \text{vrai} |f(x, y)|$ — significant upper bound of the function $|f(x, y)|$ on T_{ij}, that is, the smallest of the numbers $K \geq 0$ for which the inequality $|f(x, y)| > K$ holds on the set of measure zero.
Approximation of the Discontinuous Two Variables Function by a Discontinuous Interpolation Spline and Triangular Elements with One Curved Side

Let a discontinuous function of two variables $f(x, y)$ defined in the domain D. We assume that the region D is divided by lines $x_0 = 0 < x_1 < x_2 < ... < x_m = 1, y_0 = 0 < y_1 < y_2 < ... < y_n = 1$ into rectangular elements, and each rectangle is divided into two right triangles with curvilinear hypotenuse. Triangles do not fit into each other, and the sides of the triangles do not intersect. The function $f(x, y)$ has discontinuities of the first kind at the boundaries between these right triangles (not necessarily between all). We construct an operator of discontinuous piecewise polynomial interpolation such that in each triangle it is an operator of polynomial interpolation of a function $f(x, y)$.
Consider a triangular element $T_{ij}, i = 1, \ldots, n, j = 1, \ldots, m$.

Let us consider given:

1) traces of the function $f(x, y)$ on the line $x = x_i$ (to the right and to the left of the line);

2) traces of the function $f(x, y)$ on the line $y = y_j$ (to the right and to the left of the line);

3) traces of a function $f(x, y)$ on a curved hypotenuse (below and above of the line).
Theorem 5. If traces of the function \(f(x, y) \) satisfy the conditions
\[
\psi p_j(x_i) = \varphi p_i(y_j), \quad \eta m_{ij}(x_i) = \varphi p_i\left(g^{-1}(1-h(x_i))\right),
\]
\[
\eta m_{ij}\left(h^{-1}(1-g(y_j))\right) = \psi p_j\left(h^{-1}(1-g(y_j))\right),
\]
then the operator
\[
L f(x, y) = L_1 f(x, y) + L_2 f(x, y) - L_{12} f(x, y) \tag{3}
\]
\[
L_1 f(x, y) = h(x) \cdot \eta m_{ij}(y) + g(y) \cdot \eta m_{ij}(x),
\]
\[
L_2 f(x, y) = \psi p_j(x) + \varphi p_i(y) - \varphi p_i(y_j),
\]
\[
L_1 L_2 f(x, y) = h(x) \left(\varphi p_i(y) + \mu p_j(y) - \varphi p_i(y_j) \right) +
\]
\[
g(y) \left(\eta m_{ij}(x_i) + \mu m_i(x) - \psi p_j(x) \right),
\]
interlinear a function \(f(x, y) \) on three sides of a triangle \(T_{ij}, \ i = \overline{1, n}, \ j = \overline{1, m} \), i.e.
\[
L f(x, y)|_{y=y_j} = \psi p_j(x), \quad L f(x, y)|_{x=x_i} = \varphi p_i(y),
\]
\[
L f(x, y) = f(x, y), \text{ if } h(x) + g(y) = 1.
\]
Theorem 6. If \(f(x, y) \in C^{(1,1)}(T_{ij}) \), then for the residual
\[
Rf(x, y) = (I - L)f(x, y)
\]
equals
\[
Rf(x, y) = (1 - h(x) - g(y))\int_0^x \int_0^y f^{(1,1)}(u,v)\,du\,dv + \\
+ f(x) \int_0^x \int_0^y f^{(1,1)}(u,v)\,du\,dv + g(y)\int_0^y \int_0^x f^{(1,1)}(u,v)\,du\,dv.
\]

Remark. For arbitrary functions \(f(x, y) = u(x) + v(y) \), where \(u(x), v(y) \) are arbitrary functions of one variable, equality holds \(Lf(x, y) = f(x, y) \).

Comment. If \(\phi p_i(y) = \phi m_i(y) \), \(\psi p_j(x) = \psi m_j(x) \), \(\eta p_{ij}(x) = \eta m_{ij}(x) \), then the constructed discontinuous spline of the form (3) is a continuous interlacing spline at the boundaries of a triangular element \(T_{ij} \).
Example. Let the function $f(x, y)$ be defined in the domain $T = T_1 \cup T_2 \cup T_3 \cup T_4$ as shown in Fig. 4a. The cathetus of these triangular elements are formed by straight lines $x = 0, y = 0$, and the hypotenuses given by an equation of the form $h(x) + g(y) = 1$, where they satisfy the conditions $h(x), g(y)$ and are defined in each triangular element as follows:

$T_1 : h(x) = x^2, \ g(y) = y,$ \quad $T_2 : h(x) = -x, \ g(y) = y,$

$T_3 : h(x) = x^2, \ g(y) = y^2,$ \quad $T_4 : h(x) = x^2, \ g(y) = y^2.$

$$f(x, y) = \begin{cases}
0.5, & 0 < x < 1, \ 0 < y < 1 - x^2, \\
-x + 1, & -1 < x < 0, \ 0 < y < 1 + x, \\
x^2 + y^2, & -\sqrt{1-y^2} < x < \sqrt{1-y^2}, -1 < y < 0.
\end{cases}$$
As initial data we will use the traces of a given function on the lines of triangular elements:

\[T_1 : \varphi p(y) = f(+0, y) = 0.5, \quad \psi p(x) = f(y, +0) = 0.5, \]
\[\eta m(x) = f(x, 1 - x^2 - 0) = 0.5 \Rightarrow \eta m(y) = 0.5 \]

\[T_2 : \varphi m(y) = f(-0, y) = 1, \quad \psi p(x) = f(x, +0) = -x + 1, \]
\[\eta p(y) = f(x, 1 + x + 0) = -x + 1 \]

\[T_3 : \varphi m(y) = f(-0, y) = y^2, \quad \psi m(x) = f(x, -0) = x^2, \]
\[\eta p(x) = f(x, -\sqrt{1 - x^2} + 0) = 1 \]

\[T_4 : \varphi p(y) = f(+0, y) = y^2, \quad \psi m(x) = f(x, -0) = x^2, \]
\[\eta m(x) = f(x, -\sqrt{1 - x^2} - 0) = 1 \]
We construct the operator \(L_1(x, y) \) on \(T_1 \). By the theorem 5 it has a view

\[
L_1 f(x, y) = L_1 f(x, y) + L_2(x, y) - L_{12}(x, y)
\]

\[
L_1 f(x, y) = h(x) \cdot \eta m(y) + g(y) \cdot \eta m(x) = x^2 \cdot 0.5 + y \cdot 0.5
\]

\[
L_2 f(x, y) = \psi p(x) + \varphi p(y) - \varphi p(0) = 0.5 + 0.5 - 0.5 = 0.5
\]

\[
L_1 L_2 f(x, y) = h(x)(\varphi p(y) + \mu p(y) - \varphi p(0)) + g(y)(\eta m(0) + \mu m(x) - \psi p(x)) =
\]

\[
= x^2(0.5 + 0.5 - 0.5) + y(0.5 - 0.5 + 0.5) = 0.5x^2 + 0.5y
\]

\[
L_1 f(x, y) = 0.5x^2 + 0.5y + 0.5 - 0.5x^2 - 0.5y = 0.5
\]

That is, the linear function of the interlination operator restored exactly.
Operators L_2, L_3, L_4 are constructed in a similar way. As a result, we obtain the discontinuous interlinaton operator, which completely coincides with the given function.
Conclusions

Paper develops a method for approximation of the discontinuous functions of two variables by discontinuous interlination splines using triangular elements. Experimental data are one-sided traces of a function given along a system of lines (such data are commonly used in remote methods, in particular in tomography). The paper also proposes a method for approximating the discontinuous functions of two variables taking into account triangular elements having one curved side. Proposed methods improve approximation of the discontinuous functions, allowing an application to more complex domains of the definition and avoiding the Gibbs phenomenon.
Thanks for attention