Some boundary properties of nonlocal minimal surfaces

Serena Dipierro

University of Western Australia

Mini-symposium on Variational and evolutionary models involving local/nonlocal interactions, 8th European Congress of Mathematics
Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions” between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
Outline

Nonlocal minimal surfaces

Energy functional dealing with "pointwise interactions" between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
Outline

Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions” between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions” between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
Outline

Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions” between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
Outline

Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions” between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
Outline

Nonlocal minimal surfaces

Energy functional dealing with “pointwise interactions” between a given set and its complement

Main idea: the “surface tension” is the byproduct of long-range interactions

Implications: nonlocal phase transitions and nonlocal capillarity theories

New effects due to the long-range interactions

Contributions from “far-away” can have a significant influence on the local structures of these new objects

STICKINESS Differently from classical minimal surfaces, the nonlocal minimal surfaces have the strong tendency to “stick at the boundary” (Dipierro-Savin-Valdinoci)
The fractional perimeter functional

Given $s \in (0, 1)$ and a bounded open set $\Omega \subset \mathbb{R}^n$ with $C^{1,\gamma}$-boundary, the s-perimeter of a (measurable) set $E \subseteq \mathbb{R}^n$ in Ω is defined as

$$
\text{Per}_s(E; \Omega) := L(E \cap \Omega, (CE) \cap \Omega) + L(E \cap \Omega, (CE) \cap (C\Omega)) + L(E \cap (C\Omega), (CE) \cap \Omega),
$$

where $CE = \mathbb{R}^n \setminus E$ denotes the complement of E, and $L(A, B)$ denotes the following nonlocal interaction term

$$
L(A, B) := \int_A \int_B \frac{1}{|x - y|^{n+s}} \, dx \, dy \quad \forall \, A, B \subseteq \mathbb{R}^n,
$$

This notion of s-perimeter and the corresponding minimization problem were introduced in [Caffarelli-Roquejoffre-Savin, 2010].
1) **Existence theorem:**
 there exists E s-minimizer for Per_s in Ω with $E \setminus \Omega = E_0 \setminus \Omega$.

2) **Maximum principle:**
 E s-minimizer and $(\partial E) \setminus \Omega \subset \{|x_n| \leq a\} \Rightarrow \partial E \subset \{|x_n| \leq a\}$.

3) If ∂E is an hyperplane, then E is s-minimizer.

4) If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 2$.

5) If E is s-minimizer and $0 \in \partial E$, then
 \[
 \int_{\mathbb{R}^n} \frac{\chi_E(y) - \chi_{E^c}(y)}{|y|^{n+s}} dy = 0.
 \]
1) **Existence theorem:**

 There exists E s-minimizer for Per_s in Ω with $E \setminus \Omega = E_0 \setminus \Omega$.

2) **Maximum principle:**

 E s-minimizer and $(\partial E) \setminus \Omega \subset \{|x_n| \leq a\} \Rightarrow \partial E \subset \{|x_n| \leq a\}$.

3) If ∂E is an hyperplane, then E is s-minimizer.

4) If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_1/2$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 2$.

5) If E is s-minimizer and $0 \in \partial E$, then

 $\int_{\mathbb{R}^n} \frac{\chi_E(y) - \chi_{E^c}(y)}{|y|^{n+s}} \, dy = 0$.

[Caffarelli-Roquejoffre-Savin, 2010]
1) **Existence theorem:**
 there exists E s-minimizer for Per_s in Ω with $E \setminus \Omega = E_0 \setminus \Omega$.

2) **Maximum principle:**
 E s-minimizer and $(\partial E) \setminus \Omega \subset \{|x_n| \leq a\} \Rightarrow \partial E \subset \{|x_n| \leq a\}$.

3) If ∂E is an hyperplane, then E is s-minimizer.

4) If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_1/2$ except in a closed set Σ, with Hausdorff dimension less or equal than $n-2$.

5) If E is s-minimizer and $0 \in \partial E$, then

\[
\int_{\mathbb{R}^n} \frac{\chi_E(y) - \chi_{E^c}(y)}{|y|^{n+s}} dy = 0.
\]
Some boundary properties of nonlocal minimal surfaces

S. Dipierro

Introduction

Limits

Stickiness phenomenon

1) Existence theorem:
there exists E s-minimizer for Per_s in Ω with
$E \setminus \Omega = E_0 \setminus \Omega$.

2) Maximum principle:
E s-minimizer and $(\partial E) \setminus \Omega \subset \{ |x_n| \leq a \} \Rightarrow$
$\partial E \subset \{ |x_n| \leq a \}$.

3) If ∂E is an hyperplane, then E is s-minimizer.

4) If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in
a closed set Σ, with Hausdorff dimension less or equal than $n - 2$.

5) If E is s-minimizer and $0 \in \partial E$, then
$$\int_{\mathbb{R}^n} \frac{\chi_E(y) - \chi_{E^c}(y)}{|y|^{n+s}} dy = 0.$$
1) Existence theorem: there exists E s-minimizer for Per_s in Ω with $E \setminus \Omega = E_0 \setminus \Omega$.

2) Maximum principle: E s-minimizer and $(\partial E) \setminus \Omega \subset \{|x_n| \leq a\} \Rightarrow \partial E \subset \{|x_n| \leq a\}$.

3) If ∂E is an hyperplane, then E is s-minimizer.

4) If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 2$.

5) If E is s-minimizer and $0 \in \partial E$, then

$$\int_{\mathbb{R}^n} \frac{\chi_E(y) - \chi_{E^c}(y)}{|y|^{n+s}} dy = 0.$$
[Savin-Valdinoci, 2013]:

Regularity of cones in dimension 2.

If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 3$.
Regularity in dimension 2

[Savin-Valdinoci, 2013]:
Regularity of cones in dimension 2.

If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 3$.
Limit as $s \to 1$

$$(1 - s)\text{Per}_s \to \text{Per}, \quad \text{as } s \nearrow 1$$

(up to normalizing multiplicative constants).

\[\downarrow\]

[Caffarelli-Valdinoci, 2013]:
s close to 1: nonlocal minimal surfaces are as regular as classical minimal surfaces.

(If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 8$.)
Limit as $s \to 1$

$$(1 - s)\text{Per}_s \to \text{Per}, \quad \text{as } s \uparrow 1$$

(up to normalizing multiplicative constants).

\downarrow

[Caffarelli-Valdinoci, 2013]:

s close to 1: nonlocal minimal surfaces are as regular as classical minimal surfaces.

(If E is s-minimizer in B_1, then ∂E is $C^{1,\alpha}$ in $B_{1/2}$ except in a closed set Σ, with Hausdorff dimension less or equal than $n - 8$.)
Limit as $s \to 0$

[Maz’ya-Shaposhnikova, 2002] and [Dipierro-Figalli-Palatucci-Valdinoci, 2013]:

If there exists the limit

$$\alpha(E) := \lim_{s \downarrow 0} s \int_{E \cap (CB_1)} \frac{1}{|y|^{n+s}} \, dy,$$

then

$$\lim_{s \downarrow 0} s \text{Per}_s(E, \Omega) = \left(\omega_{n-1} - \alpha(E) \right) \frac{|E \cap \Omega|}{\omega_{n-1}} + \alpha(E) \frac{|\Omega \setminus E|}{\omega_{n-1}}.$$
Stickiness to half-balls

For any $\delta > 0$,

$$K_\delta := \left(B_{1+\delta} \setminus B_1 \right) \cap \{ x_n < 0 \}.$$

We define E_δ to be the set minimizing the s-perimeter among all the sets E such that $E \setminus B_1 = K_\delta$.
There exists $\delta_o > 0$ such that for any $\delta \in (0, \delta_o]$ we have that

$$E_\delta = K_\delta.$$
Given a large $M > 1$ we consider the s-minimal set E_M in $(-1, 1) \times \mathbb{R}$ with datum outside $(-1, 1) \times \mathbb{R}$ given by the jump $J_M := J_M^- \cup J_M^+$, where

$$J_M^- := (-\infty, -1] \times (-\infty, -M)$$

and

$$J_M^+ := [1, +\infty) \times (-\infty, M).$$
Stickiness to the sides of a box

There exist $M_o > 0$ and $C_o \geq C'_o > 0$, depending on s, such that if $M \geq M_o$ then

$$[-1, 1) \times [C_o M^{\frac{1+s}{2+s}}, M] \subseteq E^c_M$$

and

$$(-1, 1] \times [-M, -C_o M^{\frac{1+s}{2+s}}] \subseteq E_M.$$

Also, the exponent $\beta := \frac{1+s}{2+s}$ above is optimal.
Stickiness to the sides of a box
We consider a sector in \mathbb{R}^2 outside B_1, i.e.

$$\Sigma := \{(x, y) \in \mathbb{R}^2 \setminus B_1 \text{ s.t. } x > 0 \text{ and } y > 0\}.$$

Let E_s be the s-minimizer of the s-perimeter among all the sets E such that $E \setminus B_1 = \Sigma$. Then, there exists $s_o > 0$ such that for any $s \in (0, s_o]$ we have that $E_s = \Sigma$.
Some boundary properties of nonlocal minimal surfaces
S. Dipierro

Introduction
Limits
Stickiness phenomenon

Stickiness as $s \to 0^+$
Instability of the flat fractional minimal surfaces

Fix $\epsilon_0 > 0$ arbitrarily small. Then, there exists $\delta_0 > 0$, possibly depending on ϵ_0, such that for any $\delta \in (0, \delta_0]$ the following statement holds true.

Assume that $F \supset H \cup F_- \cup F_+$, where

$$H := \mathbb{R} \times (-\infty, 0),$$

$$F_- := (-3, -2) \times [0, \delta)$$

and

$$F_+ := (2, 3) \times [0, \delta).$$

Let E be the s-minimal set in $(-1, 1) \times \mathbb{R}$ among all the sets that coincide with F outside $(-1, 1) \times \mathbb{R}$.

Then

$$E \supseteq (-1, 1) \times (-\infty, \delta^{\frac{2+\epsilon_0}{1-s}}].$$
Instability of the flat fractional minimal surfaces

\[\beta := \frac{2 + \epsilon_0}{1 - s} \]
Some boundary properties of nonlocal minimal surfaces
S. Dipierro

Introduction
Limits
Stickiness phenomenon

-1 1
Some boundary properties of nonlocal minimal surfaces
S. Dipierro

Introduction

Limits

Stickiness phenomenon
Some boundary properties of nonlocal minimal surfaces

S. Dipierro

Introduction

Limits

Stickiness phenomenon
A useful barrier
(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

We consider nonlocal minimal surfaces in a cylinder with prescribed datum given by the complement of a slab.

\[\Omega := \{ (x', x_n) \text{ with } |x'| < 1 \}. \]

\[E_0 := \{ (x', x_n) \text{ with } |x'| > M \}. \]
We consider nonlocal minimal surfaces in a cylinder with prescribed datum given by the complement of a slab.

\[\Omega := \{(x', x_n) \text{ with } |x'| < 1\}. \]

\[E_0 := \{(x', x_n) \text{ with } |x'| > M\}. \]
We consider nonlocal minimal surfaces in a cylinder with prescribed datum given by the complement of a slab.

\[\Omega := \{ (x', x_n) \text{ with } |x'| < 1 \}. \]

\[E_0 := \{ (x', x_n) \text{ with } |x'| > M \}. \]
As in the classical case, when the width of the slab is large the minimizers are disconnected and when the width of the slab is small the minimizers are connected.

Differently from the classical case, when the width of the slab is large the minimizers are not flat discs, and when the width of the slab is small then the minimizers completely adhere to the side of the cylinder.
As in the classical case, **when the width of the slab is large the minimizers are disconnected and when the width of the slab is small the minimizers are connected.**

Differently from the classical case, **when the width of the slab is large the minimizers are not flat discs, and when the width of the slab is small then the minimizers completely adhere to the side of the cylinder.**
There exists $m_0 \in (0, 1)$ such that if $M \in (0, m_0)$, then the minimizer in Ω coincides with Ω. In particular, it is connected (but it does not look like a catenoid!).
There exists $m_0 \in (0, 1)$ such that if $M \in (0, m_0)$, then the minimizer in Ω coincides with Ω. In particular, it is connected (but it does not look like a catenoid!).
(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

There exists $m_0 \in (0, 1)$ such that if $M \in (0, m_0)$, then the minimizer in Ω coincides with Ω. In particular, it is connected (but it does not look like a catenoid!).
There exists $M_0 > 1$ such that if $M > M_0$, then the minimizer in Ω is disconnected.

Differently from the classical case, the minimizer contains

$$B_{cM^{-s}}(0, \ldots, 0, -M) \cup B_{cM^{-s}}(0, \ldots, 0, M),$$

so it is not the complement of a slab. Also (at least in dimension 2) it sticks at the boundary.
(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

There exists $M_0 > 1$ such that if $M > M_0$, then the minimizer in Ω is disconnected.

Differently from the classical case, the minimizer contains

$$B_{cM-s}(0, \ldots, 0, -M) \cup B_{cM-s}(0, \ldots, 0, M),$$

so it is not the complement of a slab. Also (at least in dimension 2) it sticks at the boundary.
(Dis)connectedness of nonlocal minimal surfaces
[Dipierro-Onoue-Valdinoci, 2020]

There exists $M_0 > 1$ such that if $M > M_0$, then the minimizer in Ω is disconnected.

Differently from the classical case, the minimizer contains

$$B_{cM-s}(0, \ldots, 0, -M) \cup B_{cM-s}(0, \ldots, 0, M),$$

so it is not the complement of a slab. Also (at least in dimension 2) it sticks at the boundary.
Yin-Yang Theorems

...com'è difficile trovare l'alba dentro l'imbrunire...
Yin-Yang Theorems
[Bucur-Dipierro-Lombardini-Valdinoci, 2020]

There exists $\vartheta > 1$ such that if E is s-minimal in $\Omega \subset \mathbb{R}^n$ and $E \cap (\Omega_{\vartheta \text{diam}(\Omega)} \setminus \Omega) = \emptyset$, then

$$E \cap \Omega = \emptyset.$$
Thank you very much for your attention!