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Motivation: regular bands

A band is an idempotent semigroup. Binary operations in
bands will always be denoted by juxtaposition.

A band is regular (not to be confused with a myriad of other
uses of the same word) if each of Green’s equivalence relations
L and R are congruences. Here

x L y ⇐⇒ xy = x and yx = y
x R y ⇐⇒ xy = y and yx = x

It turns out that a band is regular if and only if it satisfies the
following identity:

xyxzx = xyzx .
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Motivation II
In a band B, define a new binary operation ◦ by x ◦ y = xyx .

Theorem (MK 2005, unpublished)
A band B is regular if and only if ◦ is associative.

Idea of proof.
Expand both sides of the associative law for ◦:

(x ◦ y) ◦ z = xyxzxyx
x ◦ (y ◦ z) = xyzyx .

Thus ◦ is associative if and only if

xyzyx = xyxzxyx .

Then just check by about a dozen steps of calculation that this
last identity is equivalent to the more familiar identity
xyxzx = xyzx .
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Motivation III

Jonathan Leech encouraged me to publish the result but I didn’t
really have anything interesting I could do with it. It just seemed
to me to be a curiosity, something someone might put in a
textbook as an exercise. So I simply forgot about it.

In late 2018, I realized that it might be interesting to learn more
about (B, ◦) for an arbitrary (not necessarily regular) band B.
The definition of the operation once again:

x ◦ y = xyx

Surprisingly, a (nearly) complete story emerged. We will start
by taking some of the identities satisfied by ◦ and using them to
define a new algebraic structure.
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Quasibands

A (left) quasiband (B, ◦) is a magma satisfying the following
identities.

x ◦ x = x (M1)
x ◦ (y ◦ x) = x ◦ y (M2)

x ◦ (y ◦ (x ◦ z)) = (x ◦ y) ◦ z (M3)
(x ◦ (y ◦ z)) ◦ ((z ◦ (y ◦ x)) ◦ u) = x ◦ (y ◦ (z ◦ u)) (M4)

These identities are independent of each other. The fourth one
probably makes your eyes glaze over, but it does have some
meaning I will discuss later.

The name “quasiband” is not the best, but we could not come
up with anything better.

If B is a band and x ◦ y = xyx , then (B, ◦) is a quasiband,
called the induced quasiband of B.
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Counting

Associative quasibands are precisely the same as left regular
bands, satisfying xyx = xy .

How these things grow, up to isomorphism:

Order 1 2 3 4 5 6
#(left reg bands) 1 2 6 23 109 630
#(quasibands) 1 2 6 23 110 642



Example

Here is a 7-element band and its induced quasiband.

· 0 1 2 3 4 5 6
0 0 6 4 0 4 5 6
1 3 1 5 3 4 5 1
2 2 2 2 2 2 2 2
3 3 1 4 3 4 5 1
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 0 6 5 0 4 5 6

◦ 0 1 2 3 4 5 6
0 0 0 4 0 4 5 0
1 1 1 5 1 4 5 1
2 2 2 2 2 2 2 2
3 3 3 4 3 4 5 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 5 6 4 5 6

The subset A = {0,1,2,3,4,5} is a subquasiband but not a
subband. (A, ◦) is not associative since

(0 ◦ 1) ◦ 2 = 0 ◦ 2 = 4 6= 5 = 0 ◦ 5 = 0 ◦ (1 ◦ 2) .



A question

At this point, you’re probably wondering:

How do we know this is the “right” definition? Surely induced
quasibands satisfy many identities. Why are the four identities
in the definition of quasiband enough?

Good question! And it deserves a complete answer. Which I
defer until after ...



Natural preorder and partial order

On a quasiband (B, ◦), define a relation:

x � y ⇐⇒ x ◦ y = x .

Theorem
� is a preorder and is compatible with ◦, that is, x � y implies
x ◦ z � y ◦ z and z ◦ x � z ◦ y.

Let D be the equivalence relation induced by �, that is, x D y if
and only if x � y and y � x .

Theorem
D is the smallest semilattice congruence on B.

If ◦ is associative, D coincides with the usual Green’s relation.



Natural partial order

On a quasiband (B, ◦), define a relation:

x ≤ y ⇐⇒ y ◦ x = x .

Theorem
≤ is a partial order that refines �, that is, if x ≤ y then x � y.

If ◦ is associative, ≤ coincides with the usual natural partial
order.



Multiplication semigroups

For each a in a quasiband (B, ◦), define

Ma : B → B; x 7→ a ◦ x .

Let Mlt(X ) = 〈Ma | a ∈ B〉 be the transformation semigroup
(called the left multiplication semigroup) generated by the Ma’s.

Theorem
Let (B, ◦) be a quasiband. Then:

1 Mlt(B) = {MaMb | a,b ∈ B};
2 Mlt(B) is a band;
3 The set M(B) = {Ma | a ∈ B} is a subquasiband of

(Mlt(B), ◦);
4 the mapping µ : B → M(B);a 7→ Ma is an isomorphism of

quasibands.



Sketch of Proof

(1) Remember the nasty identity (M4)? (Of course not.) Here it
is in terms of the multiplication maps:

MxMyMz = Mx◦(y◦z)Mz◦(y◦x)

It says that any composition of three M ’s can be reduced to a
composition of two M ’s.
By an easy induction, any composition of M ’s can be reduced
to just two.
(2) follows (1) and another identity that follows from the axioms:
MxMyMxMy = MxMy .
(3) is essentially just (M3): Mx ◦My = MxMyMx = Mx◦y .
(4): the hard part is showing the map is injective. This uses the
natural partial order ≤.



Upshot

Corollary
Every quasiband is isomorphic to a subquasiband of an
induced quasiband.
Thus quasibands are precisely the ◦-subreducts of bands.

In other words: our axioms were enough! Induced quasibands
do not satisfy any identities not satisfied by all quasibands.



Remark

The assignment B  Mlt(B) is not functorial. There is a
different approach which goes as follows.

For a quasiband (B, ◦), let FB denote the free band on the set
B, and let

UB = FB/ ≡

where ≡ is the congruence on FB generated by the relation
xyx = x ◦ y .
Then UB is another band which contains B as a subquasiband.
This time the assignment B  UB is functorial.

Problem
If FQX is the free quasiband on a set X , what is the relationship
between Mlt(FQX ) and FX ?
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Noncommutative, nonassociative lattices

Let (S,∧,∨) be a double band, that is, (S,∧) and (S,∨) are
bands on the same underlying set S. We use f to denote the
induced left quasiband operation of (S,∧) and g to denote the
induced right quasiband operation of (S,∨). Thus

x f y = x ∧ y ∧ x ,
x g y = y ∨ x ∨ y

(The convention of using the induced left quasiband for ∧ and
the induced right quasiband for ∨ is chosen to match some
already existing conventions in the noncommutative lattice
literature.)



Double quasibands

Thus our double quasiband (S,f,g) satisfies the following
axioms:

x f x = x x g x = x
x f (y f x) = x f y (x g y)g x = y g x

x f (y f (x f z)) = (x f y)f z ((z g x)g y)g x = z g (y g x)

(x f (y f z))f ((z f (y f x))f u) = x f (y f (z f u))
(u g ((x g y)g z))g ((z g y)g x) = ((u g z)g y)g x

What about absorption laws?
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Absorption
Well-motivated absorption laws express duality between the
natural preorders or orders of each operation. So take your
pick!
Weakest reasonable notion:

x ≤f y =⇒ y �g x (x f y)g x = x
x ≤g y =⇒ y �f x x f (y g x) = x

Analogous to Leech’s quasilattices:

x �f y =⇒ y �g x (y f x)g x = x
x �g y =⇒ y �f x x f (x g y) = x

Analogous to Leech’s paralattices:

x ≤f y =⇒ y ≤g x x g (x f y) = x
x ≤g y =⇒ y ≤f x (y g x)f x = x



Remarks

Many commonly studied classes of noncommutative lattices
(e.g., skew lattices, antilattices) have regular band reducts. This
means that in these classes, the induced double quasibands
are actually noncommutative (associative!) lattices in their own
right.

For example, if (S,∧,∨) is a refined quasilattice (e.g., a skew
lattice), then (S,f,g) is a left-handed skew lattice.

So to really get a sense of what is happening in the
nonassociative case, we need more “natural” (whatever that
means) examples of noncommutative lattices with nonregular
band reducts. This will give us “natural” examples of
nonassociative induced double quasibands to play with.
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Thanks!


