Exact spectral asymptotics of fractional processes and its applications

P. Chigansky1 \quad M. Kleptsyna2 \quad D. Marushkevych3

1University of Jerusalem, Israel
2University of Le Mans, France
3Aarhus University, Denmark

Modeling roughness and long-range dependence with fractional processes
8th European Congress of Mathematics
Outline

1. Introduction
 - Problem statement
 - Why it is interesting
 - What is well known
 - Essence of our work

2. Main Results
 - Spectral Asymptotics
 - Some Applications

3. Description of the method

4. Concluding Remarks

5. Some references
Outline

1 Introduction
 - Problem statement
 - Why it is interesting
 - What is well known
 - Essence of our work

2 Main Results
 - Spectral Asymptotics
 - Some Applications

3 Description of the method

4 Concluding Remarks

5 Some references
Objects of study

We consider

- Zero mean Gaussian process $X = (X_t; t \in [0, 1])$ with covariance function
 \[K(s, t) = \mathbb{E}X_sX_t, \quad s, t \in [0, 1] \]

- Covariance operator
 \[f \mapsto (Kf)(t) := \int_0^1 K(s, t)f(s)ds, \quad t \in [0, 1] \]
A spectral problem

Problem

Given a covariance operator K, compute its eigenvalues and eigenfunctions, i.e. solve the equation:

$$(K\varphi_n)(t) = \lambda_n \varphi_n(t), \quad t \in [0, 1].$$

Unfortunately λ_n and φ_n are rarely available in closed form.
Outline

1 Introduction
 - Problem statement
 - Why it is interesting
 - What is well known
 - Essence of our work

2 Main Results
 - Spectral Asymptotics
 - Some Applications

3 Description of the method

4 Concluding Remarks

5 Some references
Applications

- Karhunen-Loeve expansion
- Equivalence and orthogonality of Gaussian measures
- Approximate sampling from heavy tailed distributions
- Numerical solutions of stochastic equations
- Exact asymptotics of the small ball probabilities
- Asymptotics of solutions of integral equations
- ...
Some comments: numerical methods

Numerical approximations...

- ...give reliable results for several first eigenvalues
- ...do not work for large values of n

Numerical relative error for eigenvalues of Brownian motion
Small L_2-ball probabilities

Problem

Given a process $X = (X_t, t \in [0, 1])$, find the asymptotics of

$$P(\|X\| \leq \varepsilon) \quad \text{as } \varepsilon \to 0.$$

To solve it, we need asymptotics

$$\lambda_n = \sum_{j=1}^{k} c_j n^{-d_j} + O(n^{-\gamma}),$$

where $\gamma - d_1 > 1$, $0 \leq d_j - d_1 \leq 1$.

Why it is non trivial

Discontinuity of the second order term

Let $K(s, t) = s \wedge t - \varepsilon s t \quad \varepsilon \in [0, 1]$. Then

$$\lambda_n = \nu_n^{-2}$$

where

- $\nu_n = n\pi - \frac{1}{2}\pi + O(n^{-1})$ when $\varepsilon \in [0, 1)$
- $\nu_n = n\pi$ when $\varepsilon = 1$.

Solutions of second kind integral equations

Two variants of the problem

- \((\varepsilon \to 0)\) Singularity perturbed integral equations
 \[
 \varepsilon u_\varepsilon(x) + (Ku_\varepsilon)(x) = f(x), \quad x \in [0, 1]
 \]

- \((T \to \infty)\) Large time behaviour of the solution
 \[
 u_T(x) + (Ku_T)(x) = f(x), \quad x \in [0, T]
 \]

They arise in

- optimal linear filtering/interpolation problems
- statistical inference of processes
Likelihood type estimates for mixed fBm noise systems

Singular perturbations

Fix $\varepsilon > 0$ and let g_ε be the solution of the equation:

$$\varepsilon g_\varepsilon(u) + \frac{d}{du} \int_0^1 g_\varepsilon(v) |u-v|^{2H-1} \text{sign}(u-v) dv = 1, \; u \in [0,1],$$

An important question

What can we say about g_ε when $\varepsilon \to 0$?
Likelihood type estimates for mixed fBm noise systems

Singular perturbations

Fix $\varepsilon > 0$ and let g_ε be the solution of the equation:

$$\varepsilon g_\varepsilon(u) + \frac{d}{du} \int_0^1 g_\varepsilon(v) |u - v|^{2H-1} \text{sign}(u-v) dv = 1, \ u \in [0, 1],$$

An important question

What can we say about g_ε when $\varepsilon \to 0$?
g_ε when $\varepsilon \to 0$
g_ε when $\varepsilon \to 0$
g_ε when $\varepsilon \to 0$
\(g_\varepsilon \) when \(\varepsilon \to 0 \)
g_ε when $\varepsilon \to 0$
g_ε when $\varepsilon \to 0$
g_{ε} when $\varepsilon \to 0$
g_ε when $\varepsilon \to 0$
g_ε when $\varepsilon \to 0$
g_ε when $\varepsilon \to 0$
1 Introduction
 - Problem statement
 - Why it is interesting
 - What is well known
 - Essence of our work

2 Main Results
 - Spectral Asymptotics
 - Some Applications

3 Description of the method

4 Concluding Remarks

5 Some references
Spectral asymptotics

Introduction
Problem statement
Why it is interesting
What is well known
Essence of our work

Main Results
Spectral Asymptotics
Some Applications

Description of the method
Concluding Remarks

Some references

State-of-the-art

Asymptotics for Brownian motion and related processes

- For the Brownian motion $K(s, t) = \min(s, t)$
 \[
 \lambda_n = \frac{1}{(n - \frac{1}{2})^2 \pi^2} \quad \text{and} \quad \varphi_n(t) = \sqrt{2} \sin \left(n - \frac{1}{2} \right) \pi t
 \]

- Similar results for related processes (Brownian bridge, Ornstein–Uhlenbeck process, etc.)

State-of-the-art techniques

- Reduce the original eigenproblem to a **classical** Sturm-Liouville problem.
- This does not work for a "long memory" processes.
State-of-the-art

Asymptotics for fractional Brownian motion

- For the fractional Brownian motion the leading asymptotic term

\[\lambda_n = \frac{\sin(\pi H) \Gamma(2H + 1)}{(n\pi)^{2H+1}} + o \left(n^{-\left(\frac{2H+2}{4H+5}\cdot\frac{4H+3}{4H+5}\right)} + \delta \right) \]

- Nothing was known about the eigenfunctions.
Classical and Fractional Sturm-Liouville problem

<table>
<thead>
<tr>
<th>Brownian motion (well-known)</th>
<th>Fractional Liouville (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral problem</td>
<td>Spectral problem</td>
</tr>
<tr>
<td>⇑</td>
<td>⇩</td>
</tr>
<tr>
<td>Sturm-Liouville Problem</td>
<td>Sturm-Liouville Problem</td>
</tr>
</tbody>
</table>
Brownian motion W_t

Spectral problem:

$$\int_0^1 x \wedge y \phi(y) \, ds = \lambda \phi(x), \quad x \in [0, 1].$$

Sturm-Liouville problem (classical):

$$-\phi'' = \lambda^{-1} \phi, \quad x \in [0, 1]$$

$$\phi(0) = \phi'(1) = 0$$

Solution to spectral problem:

$$\lambda_n = \frac{1}{(n - \frac{1}{2})^2 \pi^2} \quad \text{and} \quad \phi_n(t) = \sqrt{2} \sin \left((n - \frac{1}{2}) \pi t \right)$$
Details for Riemann-Liouville process

\[
\int_0^t (t - s)^{\alpha - 1} dW_s
\]

Sturm-Liouville problem (fractional):

\[
cD_1^\alpha - cD_0^\alpha u(x) = \lambda^{-1} u(x), \quad x \in [0, 1],
\]

\[
u(0) = 0, \quad cD_0^\alpha u(1) = 0,
\]

with the left and right Caputo derivatives of order \(\alpha \in (0, 1) \).

Spectral problem:

\[
\int_0^1 K(x, y)f(y)dy = \lambda f(x), \quad x \in [0, 1],
\]

with the kernel

\[
K(x, y) = \frac{1}{\Gamma(\alpha)^2} \int_0^{x \wedge y} (x - y)^{\alpha-1}(y - t)^{\alpha-1} dt,
\]
1 Introduction
 - Problem statement
 - Why it is interesting
 - What is well known
 - Essence of our work

2 Main Results
 - Spectral Asymptotics
 - Some Applications

3 Description of the method

4 Concluding Remarks

5 Some references
Essence of our work

Problem solved

- Obtain asymptotics of
 - eigenfunctions with respect to the uniform norm
 - eigenvalues up to the second/third... order terms
for a large class of fractional processes.

Main tool

- Spectral problem reduced to an equivalent
 integro-algebraic system of equations, more amenable
 to asymptotic analysis
- The method is a transposition of techniques for
 Riemann boundary value problems

Essence of our work

Problem solved

Obtain asymptotics of

- eigenfunctions with respect to the uniform norm
- eigenvalues up to the second/third...order terms for a large class of fractional processes.

Main tool

- Spectral problem reduced to an equivalent integro-algebraic system of equations, more amenable to asymptotic analysis
- The method is a transposition of techniques for Riemann boundary value problems

Class C of operators

The method, in principle, applies to
- operators with difference kernels representable as
 \[K(u) = \int_0^\infty \kappa(t)e^{-t|u|}dt, \]
 i.e. having inverse Laplace transform.
- their compositions with the integration operator
- linear combinations (mixed Gaussian processes)

But the implementation of the method
- is very specific to the fine structure of the kernel
- requires different tricks and leads to entirely unexpected outcomes
Operators of class $C, 1$

fBm "derivative"

$$(Kf)(t) = \frac{d}{dt} \int_0^1 f(y) H|t - y|^{2H-1} \text{sign}(t - y) dy.$$

fBm

$$(Kf)(t) = \int_0^1 K(t, y)f(y) dy,$$

where

$$K(x, y) = \frac{1}{2} \left(x^{2H} + y^{2H} - |x - y|^{2H} \right), \quad x, y \in [0, 1].$$
Operators of class C_1.

fBm "derivative"

$$(Kf)(t) = \frac{d}{dt} \int_0^1 f(y) H|t - y|^{2H-1} \text{sign}(t - y) dy.$$

fBm

$$(Kf)(t) = \int_0^1 K(t, y)f(y) dy,$$

where

$$K(x, y) = \frac{1}{2} \left(x^{2H} + y^{2H} - |x - y|^{2H}\right), \quad x, y \in [0, 1].$$
Operators of class C, II

fBm integral

$$K(x, y) = \int_0^t \int_0^s \frac{1}{2} \left(u^{2H} + v^{2H} - |v - u|^{2H} \right) dudv$$

Fractional Ornstein–Uhlenbeck

$$K(x, y) = \int_0^t e^{\beta(t-v)} \frac{d}{dv} \int_0^s H|v-u|^{2H-1} \text{sign}(v-u) e^{\beta(s-u)} dudv.$$
Operators of class C, II

fBm integral

\[
K(x, y) = \int_0^t \int_0^S \frac{1}{2} \left(u^{2H} + v^{2H} - |v - u|^{2H} \right) dudv
\]

Fractional Ornstein–Uhlenbeck

\[
K(x, y) = \int_0^t e^{\beta(t-v)} \frac{d}{dv} \int_0^S H|v-u|^{2H-1} \text{sign}(v-u) e^{\beta(s-u)} dudv.
\]
Operators of class C, III

Mixed fBm

Mixture with an independent standard Brownian motion B

$$X_t = B_t + B_t^H, \quad t \in [0, 1],$$

$$K(x, y) = s \wedge t + c_\alpha \int_0^t \int_0^s |u - v|^{-\alpha} dudv.$$

with $\alpha := 2 - 2H \in (0, 1)$ and $c_\alpha := (1 - \frac{\alpha}{2})(1 - \alpha)$
"Derivative" of the fBm

Eigenvalues

\[\lambda_n = \sin(\pi H) \Gamma(2H + 1) \nu_n^{1-2H}, \quad n = 1, 2, \ldots, \text{where} \]

\[\nu_n = \left(n - \frac{1}{2} \right) \pi + \frac{1 - 2H}{4} \pi + O(n^{-1}) \quad \text{as} \ n \to \infty. \]

Eigenfunctions

\[\varphi_n(x) = \sqrt{2} \cos \left(2\nu_n x - \frac{1 + \alpha}{8} \pi \right) + \]

\[\sqrt{\left| \alpha - 1 \right|} \frac{1}{\pi} \int_0^\infty |\rho_0(\tau)| \left(e^{-2\nu_n x \tau} - (-1)^n e^{-2\nu_n (1-x) \tau} \right) d\tau \]

\[+ n^{-1} r_n(x), \quad x \in [0, 1], \text{ with } \alpha = 2 - 2H \in (0, 2) \setminus \{1\} \]
fBm and fOU: Eigenvalues Asymptotics

Eigenvalues

The eigenvalues satisfy

\[\lambda_n = \sin(\pi H) \Gamma(2H + 1) \frac{\nu_n^{1-2H}}{\nu_n^2 + \beta^2}, \quad n = 1, 2, \ldots \]

where \(\nu_n \) is a sequence with the following asymptotics

\[\nu_n = (n - \frac{1}{2})\pi - \frac{(H - 1/2)^2}{(H + 1/2)} \frac{\pi}{2} + O_\beta(n^{-1}) \quad \text{as } n \to \infty. \]
fBm and fOU: Eigenfunctions Asymptotics

Eigenfunctions

The corresponding normalized eigenfunctions admit the approximation

$$\varphi_n(x) = \sqrt{2} \sin \left(\nu_n x + \frac{H - 3/2}{4} \frac{H - 1/2}{H + 1/2} \pi \right) +$$

$$\int_0^\infty f_0(u) e^{-x \nu_n u} du + (-1)^n \int_0^\infty f_1(u) e^{-(1-x) \nu_n u} du$$

$$+ \nu_n^{-1} r_n(x),$$

where the residual $r_n(x)$ is bounded by a constant, depending only on H, and $f_j(u)$ is an explicit function.
A typical shape of the eigenfunctions

Figure: φ_{10} and φ_{11} for $H = \frac{1}{4}$ (left) and $H = \frac{3}{4}$ (right)
Integrated fBm Eigenvalues Asymptotics

Eigenvalues

The eigenvalues of covariance operator of integrated fBm satisfy

\[\lambda_n = \sin(\pi H) \Gamma(2H + 1) \nu_n^{-2H-3} \quad n = 1, 2, \ldots \]

where

\[\nu_n = \left(n - \frac{1}{2}\right)\pi - \frac{(H - 1/2)(H + 1/2)}{H + 3/2} \frac{\pi}{2} + O(n^{-1}). \]
Integrated fBm Eigenfunctions Asymptotics

The corresponding eigenfunctions admit the approximation

\[\varphi_n(x) = \varphi_n^{(1)}(x) + \varphi_n^{(2)}(x) + \varphi_n^{(3)}(x) + n^{-1} r_n(x) \]

where \(r_n(x) \) is bounded uniformly in both \(n \in \mathbb{N} \) and \(x \in [0, 1] \) and

\[\varphi_n^{(1)}(x) = \sqrt{2} \cos \left(\nu_n x + \frac{2H + 1}{8} \pi - \frac{H - 1/2}{H + 3/2} \pi \right) \]

\[\varphi_n^{(2)}(x) = \int_0^\infty \rho_0(t) \left(Q_0(t)e^{-t\nu_n x} - (-1)^n Q_1(t)e^{-t\nu_n(1-x)} \right) dt \]

\[\varphi_n^{(3)}(x) = C_6 e^{-c\nu_n x} \cos \left(s\nu_n x + \kappa_0 \right) + C_7 e^{-c\nu_n(1-x)} \cos \left(s\nu_n(1 - x) + \kappa_1 \right) \]
Mixed fBm spectral problem

Eigenvalues:

$$
\lambda_n = \frac{1}{\nu_n^2} + \frac{\sin(\pi H)\Gamma(2H + 1)}{\nu_n^{2H+1}}, \quad n = 1, 2, \ldots
$$

where

$$
\nu_n = \nu_n^{BM} 1_{\{H > \frac{1}{2}\}} + \nu_n^{fBM} 1_{\{H \leq \frac{1}{2}\}} + O(n^{-|2H-1|})
$$

Eigenfunctions:

$$
\varphi_n(x) = \varphi_n^{BM}(x) 1_{\{H > \frac{1}{2}\}} + \varphi_n^{fBM}(x) 1_{\{H \leq \frac{1}{2}\}} + \frac{1}{n^{2H-1}} r_n(x)
$$
Outline

1 Introduction
 - Problem statement
 - Why it is interesting
 - What is well known
 - Essence of our work

2 Main Results
 - Spectral Asymptotics
 - Some Applications

3 Description of the method

4 Concluding Remarks

5 Some references
Integro-differential Equation

\[\varepsilon g_\varepsilon(u) + \frac{d}{du} \int_0^1 g_\varepsilon(v)|u-v|^{2H-1}\text{sign}(u-v)dv = 1, \quad u \in [0,1], \]

Corollary from our asymptotics

Convergence results for solutions:

- weak convergence with rate \(\varepsilon \)
- \(L^2 \) convergence with a rate depending on \(H \)
- boundary layer construction with \(\frac{1}{\sqrt{\varepsilon}} \) rate
Exact Small Balls Probability, fBm

For all $H \in (0, 1)$,

$$
\mathbb{P}(\|B^H\|_2 \leq \varepsilon) \simeq \varepsilon^{\gamma(H)} \exp \left(-\beta(H)\varepsilon^{-\frac{1}{H}}\right), \quad \varepsilon \to 0
$$

where

$$
\beta(H) = \frac{H}{(2H + 1)^{\frac{2H+1}{2H}}} \left(\frac{\sin(\pi H)\Gamma(2H + 1)}{\left(\sin \left(\frac{\pi}{2H+1}\right)\right)^{2H+1}}\right)^\frac{1}{2H}
$$

and

$$
\gamma(H) = \frac{1}{2H} \left(\frac{3}{4} + H^2 - H + \frac{1}{2}\right),
$$
Exact Small Bals Probability, mixed fBm

\[\mathbb{P}(\|\widetilde{B}\|_2 \leq \varepsilon) \sim \varepsilon^\gamma \exp \left(- \sum_{k=0}^{\lfloor 2H-1 \rfloor} \beta_k \varepsilon^{H^\frac{1}{2}} (k|2H-1|-1) \right) \]

where \(\gamma \) and \(\beta_k, k = 0, 1, 2, \ldots \) are explicitly defined functions of \(H \).
Linear filtering of fBm

Large scale asymptotics, $T \to \infty$

$$Y_t = \mu \int_0^t B_s^H ds + B_t, \quad t \in [0, T]$$

The steady state filtering error is given by

$$\lim_{T \to \infty} P_T = \left(\frac{\sin(\pi H) \Gamma(2H + 1)}{\sin \frac{\pi}{2H+1}} \right)^{\frac{1}{2H+1}} \mu^{-\frac{4H}{2H+1}}$$
Linear filtering of fOU

Small noise asymptotics, $\varepsilon \to 0$

$$Y_t = \mu \int_0^t X_s ds + \sqrt{\varepsilon} B_t, \quad t \in [0, T]$$

The high signal-to-noise filtering error is given by

$$P_{\varepsilon}(t) \approx \left(\frac{\varepsilon}{\mu^2}\right)^{\frac{2H}{1+2H}} \frac{\sin(\pi H)\Gamma(2H + 1)}{\sin \frac{\pi}{2H+1}} \begin{cases} \frac{1}{2H+1} & t < T \\ 1 & t = T \end{cases}$$
Approach in a nutshell, I

For the Laplace transform (a priori analytic function!)

\[\hat{\varphi}(z) := \int_0^1 \varphi(x)e^{-zx} \, dx, \quad z \in \mathbb{C} \]

find an expression with \textit{handy} singularities.
Reduce the original spectral problem to the solution of **Riemann-Hilbert boundary value problem** of finding two analytical on the cut plane $\mathbb{C} \setminus \mathbb{R}_{>0}$ functions $\Phi_0(z)$ and $\Phi_1(z)$ that satisfy

- **boundary condition** on $\mathbb{R}_{>0}$
- **a priori estimates** at $z = 0$ and **polynomial growth rate** at $z \to \infty$
- certain **algebraic conditions** on the imaginary axis.
Sketch of proof

- Using the particular structure of the eigenproblem obtain

\[\tilde{\varphi}(z) = P(z) - \frac{Q(z)}{\Lambda(z)} \left(e^{-z} \Phi_1(-z) + \Phi_0(z) \right), \quad z \in \mathbb{C} \]

where

- \(\Phi_0 \) and \(\Phi_1 \) are analytic on \(\mathbb{C} \setminus \mathbb{R}_+ \)
- \(\Lambda(z) \) is an explicit function
- \(P(z) \) and \(Q(z) \) are polynomials of a finite degree

- A calculation reveals that the function \(\Lambda(z) \) has
 - has a finite number of zeros \(z_1(\lambda), \ldots, z_k(\lambda) \)
 - jump discontinuity along real line
Sketch of proof

- Removal of the discontinuity gives conditions on the limit values

\[\Phi_0^\pm(t) = \lim_{z \to t^\pm} \Phi_0^\pm(z) \quad \text{and} \quad \Phi_1^\pm(t) = \lim_{z \to t^\pm} \Phi_1^\pm(z), \quad t \in \mathbb{R}_+ \]

in the form of a coupled pair of nonhomogeneous Hilbert BVPs

- The Hilbert BVPs decouple and their solutions lead to integral equations for \(\Phi_0^\pm(t) \) and \(\Phi_1^\pm(t) \), \(t \in \mathbb{R}_+ \)

- Solutions of these equations determine \(\Phi_0(z) \) and \(\Phi_1(z) \) on the whole cut plane \(\mathbb{C} \setminus \mathbb{R}_+ \) (and in turn the Laplace transform \(\hat{\varphi}(z) \))

- Removal of the poles gives algebraic constraints on \(\Phi_0 \) and \(\Phi_1 \)
Sketch of proof

Reduction

At this stage the original eigenproblem reduces to a system of coupled integral and algebraic equations!
Sketch of proof

- The integro-algebraic system has countably many solutions, whose structure is revealed asymptotically as the algebraic part of the solution tends to $+\infty$

- The eigenvalue asymptotics is extracted from the algebraic part of the solutions

- The eigenfunctions asymptotics is obtained by Laplace transform inversion of the integral part of the solutions
Work in progress

- Spectrum of weakly singular operators, in particular with logarithmic singularities
- Spectrum of fBm type processes (fractional Brownian sheet, multidimensional case...) and applications
- Estimation of H in the mixed fBm processes and the standard filtering setting
Some references

