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Motivation: Asymptotic behavior of solutions to the Heat
Equation

{
ut(x, t) = ∆u(x, t), x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN ,
(HE)

with u0 ∈ L1(RN ) ∩ L∞(RN ). Then, for any 1 ≤ q ≤ ∞:

‖u(·, t)−G(·, t)‖Lq(RN ) → 0 as t→∞,

where G(x, t) is the Gaussian kernel:

G(x, t) =
1

(4πt)N/2
exp (−|x|

2

4t
).

Question: does this imply the Convergence in Relative Error (CRE)∥∥∥∥ u(·, t)
G(·, t) − 1

∥∥∥∥
L∞(RN )

→ 0 as t→∞ ?

Answer: not always.
Difficulty: when |x| → ∞, both u and G tend to 0.
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Counterexample: Let u0(x) = G(x,C). Then u(x, t) = G(x, t+ C) solves the
corresponding HE. Thus

u(x, t)

G(x, t)
− 1 =

G(x, t+ C)

G(x, t)
=

(
t

t+ C

)N/2
exp (

x2

4

C

t(t+ C)
)− 1

which is not uniformly bounded for all x ∈ RN .

Open problem: characterize the class of initial data u0 for which (CRE) holds
for the (HE).
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Problem solved for nonlinear analogues

CRE holds when u0 ∈ L1(RN ) ∩ L∞(RN ) (not optimal) for the following
equations:

The fast diffusion equation ut(x, t) = ∆um(x, t), mc = N
N+2

< m < 1.

Convergence in relative error: Vázquez (2003).
Global Harnack Principle: Bonforte-Vázquez (2006), under pointwise tail conditions on the data.
A complete characterization of the GHP and CRE recently proven by Bonforte and Simonov
(2020), in the case of (FDE), also in presence of Caffarelli-Kohn-Nirenberg (CKN) weights.

The fractional heat equation ut(x, t) = −(−∆)su(x, t), 0 < s < 1.

See Bonforte-Sire-Vázquez (2017).

The p−Laplacian evolution equation ut(x, t) = ∆pu(x, t),
pc = 2N

N+1
< p < 2.

See Bonforte-Simonov-Stan 2021.

The corresponding of the Gaussian kernel is the fundamental solution of each
equation.
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The evolution p-Laplacian equation

ut(x, t) = ∆pu(x, t) (PLE)

Goal: Prove quantitative lower and upper estimates for the Cauchy problem{
ut(x, t) = ∆pu(x, t), x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN ,
(CP)

where N ≥ 1, pc := 2N
N+1

< p < 2 (good fast diffusion range), u0 ∈ L1(RN )

and ∆pu = ∇ · (|∇u|p−2∇u) is the p−Laplacian operator.

M. Bonforte, N. Simonov, D.Stan The Cauchy problem for the fast p-Laplacian evolution equation.

Characterization of the global Harnack principle and fine asymptotic behaviour, preprint arXiv:2103.03312.
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Fundamental solution for pc < p < 2

The large time asymptotic behavior is described by the Barenblatt solution:

B(x, t;M) = t
1

2−p
[
b1t

βp
p−1M

p−2
p−1

βp
+ b2 |x|

p
p−1

]− p−1
2−p

Figure: B(x, t1;M) , B(x, t2;M) , B(x, t3;M) for t3 < t2 < t1.
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Convergence of u to the fundamental solution with the
same mass

Figure: Orange: the solution to the (CP). Blue: the fundamental solution to the PLE with same mass

For u0 ∈ L1(RN ) ∩ L∞(RN ):

‖u(·, t)− B(·, t;M)‖L1(RN ) → 0, as t→∞,

tNβ‖u(·, t)− B(·, t;M)‖L∞(RN ) → 0, as t→∞,
References: Kamin and Vázquez (1988) for p > 2. Bonforte-Simonov-Stan (2021) for pc < p < 2.
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The Cauchy problem: properties of solutions for
pc < p < 2

Existence and uniqueness of weak solutions for L1 data.

Conservation of mass

∫
RN

u(x, t)dx =

∫
RN

u0(x)dx = M , for all t > 0.

Infinite speed of propagation (compactly supported initial data produce
everywhere-positive solutions)

Benilan-Crandall estimate: ut(·, t) ≤
u(·, t)

(2− p)t for a.e. t > 0.

⇔ for a.e. x ∈ RN we have that

t→ t
− 1

2−p u(x, t) is a non-increasing function for a.e. t > 0.

L1 − L∞ estimate: ‖u(t0)‖L∞(RN ) . ‖u0‖pβL1(RN )
t−Nβ0

Some references: DiBenedetto (1990), DiBenedetto-Gianazza-Vespri (book
2012), Vázquez (book 2006), Zhao (1995), . . .
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Other ranges of p

p = 2: the linear Heat Equation, infinite speed of propagation and C∞

smooth solutions obtained by the Gaussian representation formula.

p > 2: degenerate or slow diffusion case, mass conservation, finite speed
of propagation (compactly supported initial data generate solutions with
compact support for all times), nonnegative integrable data give bounded
solutions which are positive inside their support.

p ∈ (1, pc): very fast diffusion regime, there is a regularity breakdown,
mass is not preserved and solutions may extinguish in finite time.
See Bonforte-Iagar-Vázquez (2010), DiBenedetto-Herrero (1989), DGV
(book 2012).

p = 1: very singular case ⇒ the Total Variation Flow with applications in
image processing. Even bounded solutions may be discontinuous.
See Andreu-Caselles-Mazón (book 2004).
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The questions we address

Do nonnegative integrable solutions behave like the fundamental solution?

If yes, in which sense? Do they have the same tail behaviour?
(Q)
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Our space for initial data (Optimal for GHP and CRE)

Integral tail condition:

Xp =

{
f ∈ L1(RN ) : sup

R>0
R

p
2−p−N

∫
RN\BR(0)

|f(x)|dx < +∞

}
Subspace: pointwise tail condition

Ap =
{
f ∈ L1(RN ) : ∃A,R0 > 0 s.t. |f(x)| ≤ A|x|−

p
2−p for all |x| ≥ R0

}

Then:

1 C0(RN ) ⊂ Ap ⊂ Xp.

2 B(x, t;M) ∈ Ap ⊂ Xp.

3 Ap ( Xp.
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Main result 1: GHP and CRE

Theorem

Let N ≥ 1 and pc := 2N
N+1

< p < 2. Let u be a weak solution to Problem (CP)

corresponding 0 ≤ u0 ∈ L1(RN ). Then, the following statements are
equivalent:

(i- Characterization in terms of the space Xp)

u0 ∈ Xp \ {0} that is 0 < sup
R>0

R
p

2−p−N
∫
RN\BR(0)

|u0(y)|dy < +∞.

(ii- Global Harnack Principle). For any t0 > 0, there exist (explicit)
constants τ1, M1, τ2, M2 such that, for all x ∈ RN and t > t0:

B(x, t− τ1;M1) ≤ u(x, t) ≤ B(x, t+ τ2;M2) .

(iii- Uniform Convergence in Relative Error) We have that

lim
t→∞

∥∥∥ u(·, t)
B(·, t;M)

− 1
∥∥∥
L∞(RN )

= 0 , where M = ‖u0‖L1(RN ) .
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What happens when the initial datum is in
X c

p = L1(RN) \ Xp?

We construct explicit examples of sub-solutions and super-solutions to the
(PLE), with a tail which is slightly fatter that the maximal one allowed in Xp.
As a consequence, we deduce that solutions corresponding to such data will
never satisfy a GHP:

1

(1 + |x|)
p

2−p−δ
. u0(x) .

1

(1 + |x|)
p

2−p−ε

implies
c0(t)

(1 + |x|)
p

2−p−δ
. u(x, t) .

c1(t)

(1 + |x|)
p

2−p−ε

for sufficiently small ε, δ > 0, where c0, c1 are explicit functions that we
construct.
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Some applications

Uniform convergence in relative error (equivalent to GHP by Theorem 1).

Convergence rates.See for instance Agueh-Blanchet-Carrillo (2009), Del
Pino-Dolbeault (2002), where (a stricter condition than) GHP is taken as
an assumption to make all the machinery work. They work with the
Doubly Nonlinear Diffusion equation ut = ∆pu

m, so that when m = 1
you recover (PLE).

Quantitative stability results in Gagliardo-Nirenberg-Sobolev inequalities,
see Bonforte-Dolbeault-Nazaret-Simonov (2020).

To describe the behavior of solutions to reaction-diffusion problems, see
for instance Audrito-Vázquez (2017) for the doubly nonlinear
reaction-diffusion equations and Stan-Vázquez (2014) for the fractional
diffusion.
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Local Harnack estimates

Local Harnack estimates for the (PLE): Bonforte-Iagar-Vázquez (2010)

inf
BR(x0)

u(x, t) ≥ C sup
BR(x0)

u(x, t),

for all R > 0, with C independent of the ball BR(x0).

If you replace BR(x0) by RN , the estimate does not say anything:

inf
RN

u(x, t) = 0.

In RN the equivalent result is the Global Harnack Principle: comparing u
with the fundamental solution.
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Towards the GHP: Upper bound

Theorem

Let N ≥ 1 and pc < p < 2. Let u be a weak solution to (CP) corresponding to
an initial datum 0 ≤ u0 ∈ Xp. Then, for any t0 > 0, there exist constants
τ2, M2 such that

u(x, t) ≤ B(x, t+ τ2;M2), for all x ∈ RN , t ∈ (t0,∞).

Steps:

1 u0 ∈ Xp ⇒ u(x, t0/2) ≤ A|x|−
p

2−p , ∀x ∈ R ⇔ u(·, t0/2) ∈ Ap.
2 Prove the upper bound for data in Ap.

3 Relate the result to u(x, t) using the semigroup structure of the (PLE).
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Strategy:

1 Determine sufficient conditions s.t u(x, t0) ≤ U(x, t;S) for |x| > 0, where
U= singular Barenblatt solution.

2 U meets the upper bound given by the smoothing effect

‖u(t0)‖L∞(RN ) . ‖u0‖pβL1(RN )
t−Nβ0

at some point |x| = R1.

3 We find the Barenblatt solution B(x, t0 + τ2;M2) to be above the barrier
U for all |x| ≥ R1, and therefore it will be above u(x, t0).

4 Inside the ball {|x| < R1} the comparison follows by the monotonicity of
B(x, t0 + τ2;M2) in |x|.
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Lower bound

Theorem

Let N ≥ 1 and pc < p < 2. Let u be a weak solution to Problem (CP) with
u0 ∈ L1(RN ), and let t0 > 0.

Then there exist τ > 0 and M > 0 such that

u(x, t) ≥ B(x, t− τ ;M) , for all x ∈ RN and t ≥ t0 ,

where τ and M > 0 are computed explicitly in terms of t0, M .
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Approach to Lower Bound

Under the hypothesis of the previous theorem, we have:

inf
x∈BR(x0)

u(x, t) ≥ C MR

RN
·


(
t
tc

)−Nβ
for t ≥ tc,(

t
tc

)1/(2−p)
for t ≤ tc,

where

tc := κM2−p
R R

1
β and MR :=

∫
BR(x0)

u0 dx .

Then, we find B(x, tc − τ : M) such that

inf
x∈BR0

(0)
u(x, tc) ≥ sup

x∈BR0
(0)

B(x, tc − τ ;M) .

Outside the ball: use the Parabolic Comparison.
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Convergence in relative error

Let N ≥ 1 and pc < p < 2. Let u be a weak solution to Problem (CP)
corresponding 0 ≤ u0 ∈ Xp \ {0} and let M = ‖u0‖L1(RN ). Then

lim
t→∞

∥∥∥ u(·, t)
B(·, t;M)

− 1
∥∥∥
L∞(RN )

= 0 .

Ingredients:

1 Convergence to the Barenblatt profile in the L∞ norm ⇒ needed to
control |u− B| in interior cones {|x| ≤ Ctβ} (balls in self-similar
coordinates).

2 The GHP in the form of upper and lower bounds ⇒ needed to control the
relative error in exterior cones {|x| ≥ Ctβ} .
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Main result 2: Gradient Estimates

Theorem (Sharp Gradient Estimates)

Let N ≥ 1 and pc < p < 2. Let u be the solution of Problem (CP) with
0 ≤ u0 ∈ L1(RN ). Then, there exists c1 = c1(N, p) > 0 s.t.

‖∇u(t)‖L∞(RN ) ≤ c1
‖u0‖2βL1(RN )

t(N+1)β
for any t > 0.

Moreover, if 0 ≤ u0 ∈ Xp, then there exists c2 = c2(N, p) > 0 s.t.

|∇u(x, t)| ≤ c2
‖u0‖2βL1(RN )

+ ‖u0‖2βXp + t
2β
2−p

(1 + |x|)
2

2−p t(N+1)β
for any x ∈ RN and t > 0 .

Sharpness:

1 ‖∇B(·, t, ;M)‖L∞(RN ) = c t−(N+1)βM2β , the maximum is taken on the

curve tβ = M (2−p)β h |x| for t > 0, where h = h(p,N) > 0 is a constant.

2 For tβ ≤ C|x|, ineq. (2) meets the space-time behaviour of the
Barenblatt profile.

3 It is possible to construct counterexamples if u0 /∈ Xp.

Based on a result of Zhao (1995).
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Better result for radially decreasing initial data

Theorem

Let N ≥ 3 and pc < p < 2. Let u be the solution of Problem (CP) with datum
0 ≤ u0 ∈ Xp ∩ C2(RN ) \ {0} radial and nonincreasing, and let
M = ‖u0‖L1(RN ). If there exist A > 0 and R0 > 0 such that

|∂ru0(r)| ≤ Ar−
2

2−p , for all r ≥ R0 ,

then, the following limit holds∥∥∥ ∂ru(·, t)
∂rB(·, t;M)

− 1
∥∥∥
L∞(RN )

t→+∞−−−−→ 0 ,

where ∂ru(r, t) (resp. ∂rB(r, t;M)) is the radial derivative of u(r, t) (resp.
B(r, t;M)).

Equivalently: Radial data that decay faster (or equal) than the Barenblatt, and
satisfy the corresponding tail condition for the radial derivative, produce
solutions that converge uniformly in relative error to the Barenblatt with the
same mass, in the C1 topology.
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Idea for the gradient decay proof in the radial data case

Fast diffusion equation:

(FDE) ut(x, t) = ∆um(x, t), x ∈ RN , t > 0.

Radial version:

(RFDE)⇔ ut = r1−n
∂

∂r

(
rn−1 |u|m−1 ur

)
, x ∈ RN .

Notice that:

(RFDE) ⇔ (FDE) for n = N .

For n > 0: (RFDE) can be rewritten as Weighted Fast Diffusion Equation
with Caffarelli-Kohn-Nirenberg weights

(WFDE) ut = |x|γ ∇.
(
|x|−γ |u|m−1∇u

)
,

where γ = N − n .

See Iagar-Sanchez-Vázquez (2008), Bonforte-Dolbeault-Muratori-Nazaret
(2017), Bonforte-Simonov (2020).
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Connection between (PLE) and (RFDE)

PLE for radial solutions u(r, t):

ut = r1−N
∂

∂r

(
rN−1 |ur|p−2 ur

)
, x ∈ RN .

Theorem (Iagar-Sanchez-Vázquez (2008))

Suppose 2 < n <∞. Then u and u are related through the following
transformation:

∂ru(r, t) = D r
2

m+1 u(r, t) , D =

(
(2m)2

m(m+ 1)2

) 1
m−1

,

where

r = r
2m
m+1 , p = m+ 1, N =

(n− 2)(m+ 1)

2m
.

Thus, for radial solutions:

(PLE) ⇔ (WFDE).
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Next step: apply Bonforte-Simonov (2020) -Theorem 3.3 :

∥∥∥∥ u(r, t)

−B(r, t;M)
− 1

∥∥∥∥
L∞(RN )

→ 0 as t→ +∞ ,

for M being the mass of the (negative) initial data

M = −
∫
RN

u0(|x|) |x|−γdx

and B(r, t;M) is the Barenblatt solution for the (WFDE).
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Thank you!
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