Lagrange multipliers and nonconstant gradient constrained problem

Sofia Giuffrè

D.I.I.E.S., “Mediterranea” University of Reggio Calabria
Reggio Calabria, Italy

8TH EUROPEAN CONGRESS OF MATHEMATICS
Minisymposium “Nonsmooth Variational Methods for PDEs and Applications in Mechanics”

20 - 26 June 2021, Portorož, Slovenia
Aim of the talk is to study a gradient constrained problem associated with a linear operator.
Aim of the talk is to study a gradient constrained problem associated with a linear operator.

First, under a condition on the gradient constraint, we prove the equivalence of a nonconstant gradient constrained problem and a suitable obstacle problem, where the obstacle solves a Hamilton-Jacobi equation in the viscosity sense.

Second, we obtain the existence of Lagrange multipliers associated with the problem. In particular, the existence of a Lagrange multiplier, which is a Radon measure, is established, whenever the free term f of the equation is of class L^p, $p > 1$, whereas, if f is a positive constant, we regularize the result, namely we prove that it belongs to L^2.

These results are contained in

- Introduction
Outline

- Introduction
- Results in literature
Outline

- Introduction
- Results in literature
- Main results of the paper
Outline

- Introduction
- Results in literature
- Main results of the paper
- Duality theory
Outline

- Introduction
- Results in literature
- Main results of the paper
- Duality theory
- Proof of the Theorems
Outline

- Introduction
- Results in literature
- Main results of the paper
- Duality theory
- Proof of the Theorems
- A counter-example
Introduction

Results in literature

Main results of the paper

Duality theory

Proof of the Theorems

A counter-example

The problem with constant gradient constraints
Outline

- Introduction
- Results in literature
- Main results of the paper
- Duality theory
- Proof of the Theorems
- A counter-example
- The problem with constant gradient constraints
- Conclusions
We consider $\Omega \subset \mathbb{R}^n$, an open bounded convex set with C^2-boundary $\partial \Omega$, and an operator

$$
\mathcal{L}u = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} \right) + \sum_{i=1}^{n} b_i(x) \frac{\partial u}{\partial x_i} + cu
$$

with associated bilinear form on $H_{0}^{1,2}(\Omega) \times H_{0}^{1,2}(\Omega)$ given by

$$
a(u, v) = \int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_i} + \sum_{i=1}^{n} b_i \frac{\partial u}{\partial x_i} v + cuv \right) \, dx,
$$

where

$$
\begin{cases}
\sum_{i,j=1}^{n} a_{ij}(x) \xi_i \xi_j \geq \nu |\xi|^2 \text{ a.e. on } \Omega, \forall \xi \in \mathbb{R}^n \\
\nu > 0, a_{ij} \in C^2(\overline{\Omega}), b_i \in C^1(\overline{\Omega}) \\
c > 0 \text{ such large that } a(u, u) \geq \alpha \|u\|_{H_{0}^{1,2}(\Omega)}^2, \alpha > 0, \forall u \in H_{0}^{1,2}(\Omega).
\end{cases}
$$

(1)
We aim at studying the following non-constant gradient constrained problem, formulated by means of the variational inequality:

\[
\text{Find } u \in K_{\nabla} = \left\{ v \in H^{1,2}_0(\Omega) : |Dv|^2 = \sum_{i=1}^{n} \left(\frac{\partial v}{\partial x_i} \right)^2 \leq g(x), \text{ a.e. on } \Omega \right\}
\]
such that:

\[
\int_{\Omega} \mathcal{L}u(v - u) \, dx \geq \int_{\Omega} f(v - u) \, dx, \quad \forall v \in K_{\nabla},
\] (2)

with \(g(x) \in C^2(\Omega), \ g(x) > 0. \)
Moreover, we consider the obstacle problem

Find \(u \in K_w = \left\{ v \in H^1_0(\Omega) : |v(x)| \leq w(x) \text{ a.e. on } \Omega \right\} \)

such that

\[
\int_{\Omega} \mathcal{L} u(v - u) \, dx \geq \int_{\Omega} f(v - u) \, dx, \quad \forall v \in K_w. \tag{3}
\]

\(w \in H^{1,\infty}(\Omega) \) is the viscosity solution of the Hamilton-Jacobi equation

\[
\begin{cases}
|Dw| = \sqrt{g(x)} & \text{a.e. in } \Omega \\
w = 0 & \text{on } \partial \Omega
\end{cases} \tag{4}
\]

defined by P.L. Lions in

\[w(x) = \inf_{x_0 \in \partial \Omega} L(x, x_0) \quad (5) \]

\[L(x, x_0) = \inf \left\{ \int_0^{T_0} \sqrt{g(\xi(s))} ds : \xi : [0, T_0] \to \overline{\Omega}, \; \xi(0) = x, \; \xi(T_0) = x_0, \; |\xi'(s)| \leq 1 \; a.e. \; in \; [0, T_0] \right\} \quad (6) \]

For existence and uniqueness of solutions to (3) we refer to

Obviously, in the case \(g(x) \equiv 1 \), the obstacle \(w(x) \) is the distance function.
The equivalence result is obtained under the following assumption on the gradient constraint g

$$- \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial g}{\partial x_j} \right) \geq 0 \quad \text{in } \Omega.$$

(7)

Next, we provide a simple example, in which the solution to the obstacle problem (3) is not a solution to problem (2) and condition (7) is not satisfied.
The equivalence result is obtained under the following assumption on the gradient constraint g

$$- \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial g}{\partial x_j} \right) \geq 0 \quad \text{in } \Omega. \quad (7)$$

Next, we provide a simple example, in which the solution to the obstacle problem (3) is not a solution to problem (2) and condition (7) is not satisfied.

Also in the case $\mathcal{L} = \Delta$ a condition on the sign of Δg is required, see

The two problems are, in general, not equivalent.
The gradient constrained problem is a classical problem intensively studied a few decades ago.

In

L. Evans, A second order elliptic equation with gradient constraint, Comm. Part. Diff. Eq., 4 (1979), 555-572

L. Evans studied general linear elliptic equations with a non-constant gradient constraint, \(g(x) \in C^2(\Omega) \), and proved an existence and uniqueness result in the space \(W^{2,p}_{loc}(\Omega) \cap W^{1,\infty}_0(\Omega) \), with \(1 < p < \infty \).
The gradient constrained problem is a classical problem intensively studied a few decades ago. In

L. Evans, A second order elliptic equation with gradient constraint, Comm. Part. Diff. Eq., 4 (1979), 555-572

L. Evans studied general linear elliptic equations with a non-constant gradient constraint, \(g(x) \in C^2(\Omega) \), and proved an existence and uniqueness result in the space \(W^{2,p}_{loc}(\Omega) \cap W^{1,\infty}_0(\Omega) \), with \(1 < p < \infty \). He also obtained \(W^{2,\infty} \) regularity under some additional restrictions. Those restrictions were removed by M. Wiegner in

Some extended results were obtained by H. Ishii and S. Koike, who prove that, if f and g are allowed to vanish simultaneously, uniqueness of solutions may fail.

H. Ishii, S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. in Partial Diff. Eq., 8(4) (1983), 317-346;
Some extended results were obtained by H. Ishii and S. Koike, who prove that, if f and g are allowed to vanish simultaneously, uniqueness of solutions may fail.

H. Ishii, S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. in Partial Diff. Eq., 8(4) (1983), 317-346;

In

the authors proves that the solution to the problem belongs to $W^{2,p}(\Omega)$ under less restrictive assumptions on the coefficients of the linear operator.
Some extended results were obtained by H. Ishii and S. Koike, who prove that, if f and g are allowed to vanish simultaneously, uniqueness of solutions may fail.

H. Ishii, S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. in Partial Diff. Eq., 8(4) (1983), 317-346;

In

the authors proves that the solution to the problem belongs to $W^{2,p}(\Omega)$ under less restrictive assumptions on the coefficients of the linear operator.

In

the author gives a $W^{2,p}$-regularity result for the solution of variational inequalities, which arise as minimization problems.
In

the equivalence between a gradient constrained problem associated with an operator of type $f(Du) + g(x, u)$ and a suitable obstacle problem is proved under some suitable regularity assumptions on g and the convexity condition on f.

The nonconstant gradient constraint is expressed by $\gamma_{K^0}(Dv) \leq 1$, where γ_K is the gauge function of K and K^0 is the polar set of a compact convex subset of \mathbb{R}^n, whose interior contains the origin.
In

the equivalence between a gradient constrained problem associated with an operator of type $f(Du) + g(x, u)$ and a suitable obstacle problem is proved under some suitable regularity assumptions on g and the convexity condition on f.

The nonconstant gradient constraint is expressed by $\gamma_{K^0}(Dv) \leq 1$, where γ_K is the gauge function of K and K^0 is the polar set of a compact convex subset of \mathbb{R}^n, whose interior contains the origin.

Finally, in the recent paper

M. Safdari, Global optimal regularity for variational problems with nonsmooth non-strictly convex gradient constraints, Journal of Differential Equations, 279 (2021), 76-135
the author proves the optimal $W^{2,\infty}$-regularity for variational problems with convex gradient constraints.
In L. Santos, Variational problems with non-constant gradient constraints, Port. Math. 59 (2) (2002) 205-248 the author obtains, under an extra condition on \(g \), the equivalence between an evolutive variational inequality with non-constant gradient constraint associated with the Laplacian and a variational inequality with two obstacles and proves the existence of a Lagrange multiplier.
In

the author obtains, under an extra condition on g, the equivalence between an evolutive variational inequality with non-constant gradient constraint associated with the Laplacian and a variational inequality with two obstacles and proves the existence of a Lagrange multiplier.

The existence of Lagrange multipliers for non-constant gradient constraint problem associated with the Laplacian is also studied in

In L. Santos, Variational problems with non-constant gradient constraints, Port. Math. 59 (2) (2002) 205-248, the author obtains, under an extra condition on \(g \), the equivalence between an evolutive variational inequality with non-constant gradient constraint associated with the Laplacian and a variational inequality with two obstacles and proves the existence of a Lagrange multiplier.

The existence of Lagrange multipliers for non-constant gradient constraint problem associated with the Laplacian is also studied in L. Santos, Lagrange multipliers and transport densities, J. Math. Pures Appl. 108 (2017) 592-611.

Finally, in A. Figalli, H. Shahgholian, An overview of unconstrained free boundary problems, Philos. Trans. Roy. Soc. A 373 (2015), no. 2050, 20140281, the authors present an overview on obstacle problem and related problems, and provides here some references of applications.
Theorem

Under the above assumptions on \(\Omega \) and under assumption (1), if \(f \equiv \text{const.} > 0 \), the following conditions are satisfied

\[
- \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial g}{\partial x_j} \right) \geq 0 \quad \text{in} \ \Omega
\]

and

\[
c \geq \|Db\|_{L^\infty} + \|D^2a_{ij}\|_{L^\infty} + \frac{(3\|Da_{ij}\|_{L^\infty} + \|b\|_{L^\infty})^2}{4\nu},
\]

(8)

the solution \(u \) of

Find \(u \in K_\nabla = \left\{ v \in H_0^{1,2}(\Omega) : |Dv|^2 = \sum_{i=1}^{n} \left(\frac{\partial v}{\partial x_i} \right)^2 \leq g(x), \ a.e. \ on \ \Omega \right\} \)

such that:

\[
\int_{\Omega} \mathcal{L}u(v - u) \, dx \geq \int_{\Omega} f(v - u) \, dx, \quad \forall v \in K_\nabla,
\]
Theorem

coincides with the solution of

Find \(u \in K_w = \left\{ v \in H_0^{1,2}(\Omega) : |v(x)| \leq w(x) \text{ a.e. on } \Omega \right\} \) such that:

\[
\int_{\Omega} \mathcal{L}u(v - u) \, dx \geq \int_{\Omega} f(v - u) \, dx, \quad \forall v \in K_w.
\]
Theorem

coincides with the solution of

Find $u \in K_w = \left\{ v \in H^{1,2}_0(\Omega) : |v(x)| \leq w(x) \text{ a.e. on } \Omega \right\}$ such that:

$$
\int_{\Omega} L u (v - u) \, dx \geq \int_{\Omega} f (v - u) \, dx, \quad \forall v \in K_w.
$$

$w \in H^{1,\infty}(\Omega)$ is the viscosity solution of the Hamilton-Jacobi equation

$$
\begin{cases}
|Dw| = \sqrt{g(x)} \quad \text{a.e. in } \Omega \\
w = 0 \quad \text{on } \partial\Omega
\end{cases}
$$

defined by

$$
w(x) = \inf_{x_0 \in \partial\Omega} L(x, x_0)
$$

$$
L(x, x_0) = \inf \left\{ \int_0^{T_0} \sqrt{g(\xi(s))} \, ds : \xi : [0, T_0] \to \overline{\Omega}, \xi(0) = x, \xi(T_0) = x_0, |\xi'(s)| \leq 1 \text{ a.e. in } [0, T_0] \right\}
$$
We would like to highlight that, in the proof of Theorem 1, we prove the following interesting coincidence of sets.

Theorem

Under the same assumptions as in Theorem 1, let $u \in K_{\nabla} \cap W^{2,p}(\Omega)$ *be the solution to problem (2). Setting*

$$I = \{ x \in \Omega : u(x) = w(x) \},$$

$$\Lambda = \{ x \in \Omega : u(x) < w(x) \}$$

it results

$$P = \{ x \in \Omega : |Du|^2 = g(x) \} = I,$$

$$E = \{ x \in \Omega : |Du|^2 < g(x) \} = \Lambda.$$
Then, we are able to prove the following two results on the existence of Lagrange multipliers.

Theorem

Under the same assumptions of Theorem 1, let $u \in K_{\nabla} \cap W^{2,p}(\Omega)$ be the solution to problem (2). Then, there exists $\bar{\mu} \in L^{2}(\Omega)$ such that

$$
\begin{cases}
\bar{\mu} \geq 0 \quad \text{a.e. in } \Omega \\
\bar{\mu} \left(g(x) - \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 \right) = 0 \quad \text{a.e. in } \Omega \\
\mathcal{L}u - f + \bar{\mu} = 0 \quad \text{a.e. in } \Omega.
\end{cases}
$$

(9)
Remarks

It is easy to prove that, if $u \in K_{\nabla}$ and there exists $\bar{\mu}$ satisfying (9), then u is also the solution to problem (2).
Remarks

It is easy to prove that, if $u \in K_{\nabla}$ and there exists $\bar{\mu}$ satisfying (9), then u is also the solution to problem (2).

Let us also remark that condition (1) on the coefficients is verified in the case $\mathcal{L} = \Delta$.
Remarks

It is easy to prove that, if \(u \in \mathcal{K}_\nabla \) and there exists \(\bar{\mu} \) satisfying (9), then \(u \) is also the solution to problem (2).

Let us also remark that condition (1) on the coefficients is verified in the case \(\mathcal{L} = \Delta \).

Under condition (7) the regularity result by G. Cimatti holds, namely the solution \(u \in \mathcal{K}_\nabla \) of (2) belongs to \(W^{2,p}(\Omega) \).
Theorem

Under the above assumptions on Ω and under assumption (1), let $f \in L^p(\Omega)$, $p > 1$, and $u \in K_\nabla$ be the solution to (2). Then, there exists $\mu \in (L^\infty(\Omega))^*$ such that

$$
\begin{aligned}
\langle \mu, y \rangle &\geq 0 \quad \forall y \in L^\infty(\Omega), \ y \geq 0 \quad \text{a.e. in } \Omega; \\
\langle \mu, \left(\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 - g(x) \right) \rangle & = 0; \\
\int_\Omega (Lu - f)\varphi \, dx & = \langle \mu, -2 \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_i} \rangle, \quad \forall \varphi \in H^{1,\infty}_0(\Omega)
\end{aligned}
$$

(10)
Theorem

Under the above assumptions on Ω and under assumption (1), let $f \in L^p(\Omega)$, $p > 1$, and $u \in K_{\nabla}$ be the solution to (2). Then, there exists $\mu \in (L^\infty(\Omega))^*$ such that

\[
\begin{align*}
\langle \mu, y \rangle &\geq 0 \quad \forall y \in L^\infty(\Omega), \ y \geq 0 \quad \text{a.e. in } \Omega; \\
\langle \mu, \left(\sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 - g(x) \right) \rangle &= 0; \\
\int_{\Omega} (Lu - f) \varphi \, dx &= \langle \mu, -2 \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_i} \rangle, \quad \forall \varphi \in H^{1,\infty}_0(\Omega)
\end{align*}
\]

Since $\mu \in (L^\infty(\Omega))^*$, μ can be expressed by a Radon’s integral with respect to the finitely additive measure Ψ:

$$
\mu(v) = \int_{\Omega} v(x) \Psi(dx).
$$
Let $\psi : S \to \mathbb{R}$, $g : S \to Y$, where S is a nonempty subset of a real linear space X, Y is a partially ordered real normed space with the ordering cone C, and consider the primal problem:

$$\min_{g(v) \in -C, \quad v \in S} \psi(v)$$ \hspace{1cm} (11)

The Lagrange dual problem is:

$$\max_{\mu \in C^*} \inf_{v \in S} [\psi(v) + \langle \mu, g(v) \rangle],$$ \hspace{1cm} (12)

where $C^* := \{\lambda \in Y^* : \langle \lambda, y \rangle \geq 0, \forall y \in C\}$ is the dual cone of C.

As it is well known, it always results

$$\max_{\mu \in C^*} \inf_{v \in S} [\psi(v) + \langle \mu, g(v) \rangle] \leq \min_{g(v) \in -C, \quad v \in S} \psi(v)$$ \hspace{1cm} (13)

and, if problem (11) is solvable and in (13) the equality holds, we say that the strong duality between primal problem (11) and dual problem (12) holds.
Let $\psi : S \rightarrow \mathbb{R}$, $g : S \rightarrow Y$, where S is a nonempty subset of a real linear space X, Y is a partially ordered real normed space with the ordering cone C, and consider the primal problem:

$$\min_{\|v\| \in -C, \; v \in S} \psi(v)$$ \hfill (11)

The Lagrange dual problem is:

$$\max_{\mu \in C^*} \inf_{v \in S} [\psi(v) + \langle \mu, g(v) \rangle]$$, \hfill (12)

where $C^* := \{ \lambda \in Y^* : \langle \lambda, y \rangle \geq 0, \; \forall y \in C \}$ is the dual cone of C.

As it is well known, it always results

$$\max_{\mu \in C^*} \inf_{v \in S} [\psi(v) + \mu(g(v))] \leq \min_{\|v\| \in -C, \; v \in S} \psi(v)$$ \hfill (13)

and, if problem (11) is solvable and in (13) the equality holds, we say that the strong duality between primal problem (11) and dual problem (12) holds.
Theorem (Classical Strong Duality Property)

Let the composite mapping $(\psi, g) : S \to \mathbb{R} \times Y$ be convex-like with respect to $\mathbb{R}_+ \times C$ in $\mathbb{R} \times Y$. Let $K = \{v \in S : g(v) \in -C\} \neq \emptyset$ and let the ordering cone C have a nonempty interior $\text{int}(C)$. If the primal problem

$$\min_{v \in K} \psi(v) \quad (14)$$

is solvable and the generalized Slater condition is satisfied, namely there is a vector $\hat{v} \in S$ with $g(\hat{v}) \in -\text{int}(C)$, then the dual problem

$$\max_{\mu \in C^*} \inf_{v \in S} [\psi(v) + \mu(g(v))] \quad (15)$$

is also solvable and the extremal values of the two problems are equal. Moreover, if u is the optimal solution to problem (14) and $\bar{\mu} \in C^*$ is a solution of the problem (15), it results

$$\bar{\mu}(g(u)) = 0. \quad (16)$$
Definition

The functional \(L : S \times C^* \rightarrow \mathbb{R} \) such that

\[
L(v, \mu) = \psi(v) + \mu(g(v)) \quad \forall v \in S, \forall \mu \in C^*
\]

is called Lagrange functional.

Theorem

Under the same assumptions as above, suppose the ordering cone \(C \) to be closed. Then, \(u \in K \) is an optimal solution to (11) if and only if there exists \(\bar{\mu} \in C^* \), such that \((u, \bar{\mu})\) is a saddle point of the Lagrange functional, namely:

\[
L(u, \mu) \leq L(u, \bar{\mu}) \leq L(v, \bar{\mu}), \quad \forall v \in S, \forall \mu \in C^*,
\]

and

\[
\langle \bar{\mu}, g(u) \rangle = 0.
\]
However, the ordering cone of almost all the known problems, stated in infinite dimensional spaces, has the interior (and generalized interior concepts) empty. Hence, the above interior conditions cannot be used to guarantee the strong duality.
However, the ordering cone of almost all the known problems, stated in infinite dimensional spaces, has the interior (and generalized interior concepts) empty. Hence, the above interior conditions cannot be used to guarantee the strong duality.

In order to overcome this serious drawback, which was also recognized by H. Brezis who writes “Il semble toutefois que les techniques abstraites d’analyse fonctionnelle soient ici insuffisants”,

P. Daniele, S. G., G. Idone and A. Maugeri in

This theory has been then refined in

P. Daniele, S. G., General infinite dimensional duality and applications to evolutionary network equilibrium problems. Optim. Lett. 1, 227-243 (2007);

This theory has been then refined in

- P. Daniele, S. G., General infinite dimensional duality and applications to evolutionary network equilibrium problems. Optim. Lett. 1, 227-243 (2007);

In

the author pointed out the surprising result that Assumption S is a necessary and sufficient condition.
We shall use the following main concepts and results.

Given a point \(x \in X \) and a subset \(M \) of \(X \), the set

\[
T_M(x) := \left\{ h \in X : h = \lim_{n} \lambda_n (x_n - x), \lambda_n > 0, x_n \in M \; \forall n \in \mathbb{N}, \lim_{n} x_n = x \right\}
\]

is called the tangent cone to \(M \) at \(x \).

If \(x \in clM \) (the closure of \(M \)) and \(M \) is convex, we have

\[
T_M(x) = clcone(M - \{x\}),
\]

where the \(coneA = \{ \lambda x : x \in A, \lambda \in \mathbb{R}^+ \} \).
Given \(\psi : S \to \mathbb{R} \), \(g : S \to Y \), \(h : S \to Z \) where \(S \) is a convex subset of a linear topological space \(X \), \(Y \) is a real normed space ordered by a convex cone \(C \), \(Z \) is a real normed space, consider the optimization problem

\[
\min_{\nu \in K} \psi(\nu),
\]

where

\[
K = \{ \nu \in S : g(\nu) \in -C, \ h(\nu) = \theta_Z \}
\]

and \(\theta_Z \) is the zero element in the space \(Z \).
Given $\psi : S \rightarrow \mathbb{R}$, $g : S \rightarrow Y$, $h : S \rightarrow Z$ where S is a convex subset of a linear topological space X, Y is a real normed space ordered by a convex cone C, Z is a real normed space, consider the optimization problem

$$\min_{\nu \in K} \psi(\nu),$$

where

$$K = \{ \nu \in S : g(\nu) \in -C, \ h(\nu) = \theta_Z \}$$

and θ_Z is the zero element in the space Z.

Definition (Assumption S)

Assumption S is fulfilled at a point $u \in K$ if and only if

$$T_{\tilde{M}}(0, \theta_Y, \theta_Z) \cap (\mathbb{R}^{--} \times \theta_Y \times \theta_Z) = \emptyset$$

where

$$\tilde{M} = \{ (\psi(\nu) - \psi(u) + \alpha, g(\nu) + y, h(v)) : \nu \in S \setminus K, \ \alpha \geq 0, \ y \in C \},$$

$$\mathbb{R}^{--} = \{ \lambda \in \mathbb{R} : \lambda < 0 \}.$$
Theorem (New strong duality property)

Assume that the functions $\psi : S \rightarrow \mathbb{R}$, $g : S \rightarrow Y$ are convex and that $h : S \rightarrow Z$ is an affine-linear mapping. Assume that the Assumption S is fulfilled at the optimal solution $u \in K$ of the problem: $\min_{v \in K} \psi(v)$.

Then also problem

$$\max_{\mu \in C^*, \lambda \in Z^*} \inf_{v \in S} [\psi(v) + \langle \mu, g(v) \rangle + \langle \lambda, h(v) \rangle],$$

(18)

where Z^* is the dual space of Z and C^* is the dual cone of C, is solvable. Moreover, if $\bar{\mu} \in C^*$, $\bar{\lambda} \in Z^*$ are optimal solutions to (18), we have

$$\langle \bar{\mu}, g(u) \rangle = 0$$

(19)

and the optimal values of the two problems coincide; namely

$$\psi(u) = \min_{v \in K} \psi(v) = \psi(u) + \langle \bar{\mu}, g(u) \rangle + \langle \bar{\lambda}, h(u) \rangle$$
The usual relationship with the saddle points of the Lagrange functional holds.

Theorem

Let the assumptions of Theorem 10 be fulfilled. Then, \(u \in \mathbb{K} \) is an optimal solution to (11) if and only if there exist \(\bar{\mu} \in C^*, \; \bar{\lambda} \in Z^* \) such that \((u, \bar{\mu}, \bar{\lambda})\) is a saddle point of the Lagrange functional, namely:

\[
L(u, \mu, \lambda) \leq L(u, \bar{\mu}, \bar{\lambda}) \leq L(v, \bar{\mu}, \bar{\lambda}), \quad \forall v \in S, \; \forall \mu \in C^*, \; \forall \lambda \in Z^*
\]

and

\[
\langle \bar{\mu}, g(u) \rangle = 0.
\]
In order to obtain the equivalence between Problems (2) and (3), the following proposition is proved.

Proposition

Under the same assumptions of Theorem 1, the solution u of problem (3) satisfies

$$|u|_1 = \sup \left\{ \frac{|u(x) - u(y)|}{|x - y|} : x, y, \in \overline{\Omega}, x \neq y \right\} \leq |w|_1,$$

with $w(x)$ defined in (5).

In the proof we argue in a similar way as done in

F.Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987,
in the case $Lu = \Delta u$ and $w(x) = \delta(x) = \text{dist}(x, \partial\Omega)$.
We may easily prove that
\[K_{\nabla} \subset K_w. \] (21)
We may easily prove that
\[K_{\nabla} \subset K_w. \tag{21} \]

Then, let \(u \in K_w \) be the solution to (3). Since \(f \equiv \text{const.} > 0 \), \(\mathcal{L} \) is linear, \(u \) is also the solution of the problem

Find \(u \in K_1 : \int_{\Omega} \mathcal{L}u(v - u)dx \geq \int_{\Omega} f(v - u)dx, \quad \forall v \in K_1, \tag{22} \)

where
\[K_1 = \{ v \in H^1_0(\Omega) : 0 \leq v(x) \leq w(x) \text{ a.e. on } \Omega \}. \]
Proof of the Theorems

We may easily prove that
\[K_{\nabla} \subset K_w. \] (21)

Then, let \(u \in K_w \) be the solution to (3).
Since \(f \equiv \text{const.} > 0 \), \(\mathcal{L} \) is linear, \(u \) is also the solution of the problem

\[
\text{Find } u \in K_1 : \int_{\Omega} \mathcal{L}u(v - u)dx \geq \int_{\Omega} f(v - u)dx, \quad \forall v \in K_1, \tag{22}
\]

where
\[K_1 = \{ v \in H^1_0(\Omega) : 0 \leq v(x) \leq w(x) \text{ a.e. on } \Omega \}. \]

We may rewrite problem (22) as the optimization problem

\[
\min_{v \in K_1} \psi(v) = \psi(u) = 0 \tag{23}
\]

where \(\psi(v) = \int_{\Omega} (\mathcal{L}u - f)(v - u)dx \).
We may easily prove that
\[K_{\nabla} \subset K_w. \] (21)

Then, let \(u \in K_w \) be the solution to (3).
Since \(f \equiv \text{const.} > 0 \), \(L \) is linear, \(u \) is also the solution of the problem

Find \(u \in K_1 : \int_{\Omega} Lu(v - u)dx \geq \int_{\Omega} f(v - u)dx, \quad \forall v \in K_1, \) (22)

where
\[K_1 = \{ v \in H^1_0(\Omega) : 0 \leq v(x) \leq w(x) \text{ a.e. on } \Omega \}. \]

We may rewrite problem (22) as the optimization problem

\[\min_{v \in K_1} \psi(v) = \psi(u) = 0 \] (23)

where \(\psi(v) = \int_{\Omega} (Lu - f)(v - u)dx. \)

The optimization problem (23) fulfills Assumption S at \(u \in K_1 \cap W^{2,p}(\Omega) \) solution of (22). Then, strong duality holds.
We are considering $Y = L^2(\Omega)$, namely

$$C = \{ w \in L^2(\Omega) : w(t) \geq 0 \text{ a.e. in } \Omega \}.$$

We cannot apply classical strong duality theory in the case, since the classical strong duality theory requires that $\text{int}(C) \neq \emptyset$.

Using variational arguments, we obtain that

\[\mathcal{L}u = f \quad a.e. \text{ in } \Lambda = \{ x \in \Omega : u(x) < w(x) \}. \]

Differentiating with respect to \(x_k \) and following the method used in H. Brezis, G. Stampacchia, *Sur la régularité de la solution d’inéquations elliptiques*, Bull. Soc. Math. France 96 (1968) 153–180. from the maximum principle, we obtain

\[|Du(x)| < \sqrt{g(x)} \quad a.e. \text{ in } \Lambda \]

and then

\[|Du(x)| \leq \sqrt{g(x)} \quad a.e. \text{ in } \Omega. \]
Using variational arguments, we obtain that

\[\mathcal{L}u = f \quad \text{a.e. in } \Lambda = \{ x \in \Omega : u(x) < w(x) \}. \] \tag{24}

Differentiating with respect to \(x_k \) and following the method used in

from the maximum principle, we obtain

\[|D u(x)| < \sqrt{g(x)} \quad \text{a.e. in } \Lambda \]

and then

\[|D u(x)| \leq \sqrt{g(x)} \quad \text{a.e. in } \Omega. \]

By uniqueness of the solutions of (3) and by (21), we may conclude that the solution to (3) is the solution to (2).
Using variational arguments, we obtain that

\[Lu = f \quad a.e. \text{ in } \Lambda = \{ x \in \Omega : u(x) < w(x) \}. \quad (24) \]

Differentiating with respect to \(x_k \) and following the method used in H. Brezis, G. Stampacchia, *Sur la régularité de la solution d’inéquations elliptiques*, Bull. Soc. Math. France 96 (1968) 153–180, from the maximum principle, we obtain

\[|Du(x)| < \sqrt{g(x)} \quad a.e. \text{ in } \Lambda \]

and then

\[|Du(x)| \leq \sqrt{g(x)} \quad a.e. \text{ in } \Omega. \]

By uniqueness of the solutions of (3) and by (21), we may conclude that the solution to (3) is the solution to (2).

In a similar way we obtain the existence a \(L^2 \)- Lagrange multiplier.
Now, let us assume \(f \in L^p(\Omega), \ p > 1, \)

We may rewrite problem (2) in the following way:

\[
\text{Find } u \in K = \left\{ v \in H_0^{1,\infty}(\Omega) : \sum_{i=1}^{n} \left(\frac{\partial v}{\partial x_i} \right)^2 \leq g(x), \ \text{a.e. on } \Omega \right\} \text{ such that:} \]

\[
\int_{\Omega} \mathcal{L}u(v - u) \, dx \geq \int_{\Omega} f(v - u) \, dx, \quad \forall v \in K.
\] (25)

This will enable us to apply the classical duality theory in the case \(X = W^{1,\infty}(\Omega), \ Y = L^\infty(\Omega), \) since in this case the ordering cone

\[
C = \{ w \in L^\infty(\Omega) : w(t) \geq 0 \ \text{a.e. in } \Omega \}
\]

has a nonempty interior.

Then, the existence of a Lagrange multiplier

\[
\mu \in C^* = \{ \mu \in (L^\infty(\Omega))^* : \mu(y) \geq 0 \ \forall y \in L^\infty(\Omega), \ y(x) \geq 0 \ \text{a.a. } x \in \Omega \}
\]

follows.
Problems (2) and (3) are, in general, not equivalent. Indeed, we are going to present an example in which a solution to the obstacle problem (3) is not a solution to problem (2).

Let $n = 1$, $\Omega = (-1, 1)$, $f \equiv 1$ and let \mathcal{L} be the operator given by

$$\mathcal{L}\varphi(x) = -\varphi''(x).$$

The function

$$u(x) = \frac{1}{2}(1 - x^2) \quad \text{for } x \in [-1, 1],$$

satisfies

$$\mathcal{L}u(x) = f(x) \quad \text{in } (-1, 1).$$
For $\varepsilon > 0$, we choose $\theta_\varepsilon \in C^3(\mathbb{R})$ so that

\[
\begin{cases}
\theta_\varepsilon(r) = r & \text{for } r \leq \frac{1}{2}, \\
\theta'_\varepsilon(r) > 0, \theta''_\varepsilon(r) \leq 0 & \text{for } r \in \mathbb{R} \\
\theta'_\varepsilon\left(\frac{3}{4}\right) < \varepsilon \\
\theta'''_\varepsilon(r) > 0 & \text{for } r > \bar{r} > \frac{1}{2}.
\end{cases}
\]
For $\varepsilon > 0$, we choose $\theta_\varepsilon \in C^3(\mathbb{R})$ so that

$$
\begin{align*}
\theta_\varepsilon(r) &= r & \text{for } r \leq \frac{1}{2}, \\
\theta'_\varepsilon(r) &> 0, \quad \theta''_\varepsilon(r) \leq 0 & \text{for } r \in \mathbb{R} \\
\theta'_\varepsilon(\frac{3}{4}) &< \varepsilon \\
\theta''''_\varepsilon(r) &> 0 & r > \bar{r} > \frac{1}{2}.
\end{align*}
$$

Setting

$$
w_\varepsilon(x) = \theta_\varepsilon(h(x)) \quad \text{for } x \in [-1, 1],
$$

where $h(x) = 1 - |x|$, it results $w_\varepsilon \in W^{1,\infty}(\Omega)$ and

$$
w'_\varepsilon(x) = \theta'_\varepsilon(h(x))h'(x) \quad \text{for } x \in (-1, 1) \setminus \{0\}.
$$
Moreover, if \(w_\varepsilon(x) \leq \frac{1}{2} \), then, by properties of \(\theta_\varepsilon \),

\[
w_\varepsilon(x) = h(x) = 1 - |x|
\]

and

\[
u(x) = \frac{1}{2}(1 - x^2) \leq 1 - |x| = w_\varepsilon(x).
\]

On the other hand, noting that

\[
u(x) \leq \frac{1}{2} \quad \text{for } x \in (-1, 1),
\]

we may conclude that

\[|u(x)| = u(x) \leq w_\varepsilon(x) \quad \text{for } x \in (-1, 1),\]

namely, with the choice of \(w = w_\varepsilon \), \(u \) is a solution to (3).
Next, if we set
\[g_\varepsilon(x) = (w_\varepsilon'(x))^2 \quad \text{for } x \in \Omega, \]

\(w_\varepsilon \) is a viscosity solution to
\[|w_\varepsilon'(x)| = \sqrt{g_\varepsilon(x)} \quad \text{in } \Omega. \]

Selecting \(0 < \varepsilon < \frac{1}{4} \) and noting that
\[|w_\varepsilon'(\frac{1}{4})| = \theta_\varepsilon' \left(\frac{3}{4} \right) < \varepsilon, \]
it results
\[|u'(\frac{1}{4})| = \frac{1}{4} > \varepsilon > |w_\varepsilon'(\frac{1}{4})| = \sqrt{g_\varepsilon \left(\frac{1}{4} \right)}, \]
which shows that \(u \notin K_\nabla \) and, hence, \(u \) is not a solution to (2).
Let us stress that condition (7) is not verified. Indeed, if \(h(x) > \bar{r} \), namely \(|x| < 1 - \bar{r} \).
If the gradient constraint g is a positive constant, the problem reduces to the well-known elastic-plastic torsion problem.
If the gradient constraint g is a positive constant, the problem reduces to the well-known elastic-plastic torsion problem.

The formulation by R. Von Mises is the following one:

“The elastic-plastic torsion problem of a cylindrical bar with cross section Ω is to find a function $\psi(x)$ which vanishes on the boundary $\partial \Omega$ and, together with its first derivatives, is continuous on Ω; nowhere on Ω the gradient of ψ must have an absolute value (modulus) less than or equal to a given positive constant τ; whenever in Ω the strict inequality holds, the function ψ must satisfy the differential equation

$$\Delta \psi = -2\mu \theta,$$

where the positive constants μ and θ denote the shearing modulus and the angle of twist per unit length respectively”.

R. Von Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse (1913) 582–592,
In the planar case the existence and the properties of a smooth solution of the problem have been studied by Ting, formulating it as a variational minimum problem.

In the planar case the existence and the properties of a smooth solution of the problem have been studied by Ting, formulating it as a variational minimum problem

In multidimensional case in

the author considers the variational inequality
Find \(u \in K = \left\{ v \in H_0^{1,\infty}(\Omega) : |Dv| = \sum_{i=1}^{n} \left(\frac{\partial v}{\partial x_i} \right)^2 \leq 1 \text{ a.e. on } \Omega \right\} \) such that

\[
\int_{\Omega} \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \left(\frac{\partial v}{\partial x_i} - \frac{\partial u}{\partial x_i} \right) dx \geq \int_{\Omega} f(v - u) dx \quad \forall v \in K, \tag{26}
\]

with \(f = \text{const.} > 0 \), and proves the existence of a Lagrange multiplier,
Find \(u \in K = \left\{ v \in H_0^{1,\infty}(\Omega) : |Dv| = \sum_{i=1}^{n} \left(\frac{\partial v}{\partial x_i} \right)^2 \leq 1 \text{ a.e. on } \Omega \right\} \) such that

\[
\int_{\Omega} \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \left(\frac{\partial v}{\partial x_i} - \frac{\partial u}{\partial x_i} \right) dx \geq \int_{\Omega} f(v - u) dx \quad \forall v \in K, \quad (26)
\]

with \(f = \text{const.} > 0 \), and proves the existence of a Lagrange multiplier, namely, if \(u \) is the solution of variational inequality (26), then there exists a unique \(\mu \in L^\infty(\Omega) \), \(\mu \geq 0 \text{ a.e. in } \Omega \) such that:

\[
\begin{cases}
\mu(1 - |Du|) = 0 \text{ a.e. in } \Omega \\
-\Delta u - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\mu \frac{\partial u}{\partial x_i} \right) = f \text{ in the sense of } D'(\Omega),
\end{cases}
\quad (27)
\]

that is the solution of (26) solves the elastic-plastic torsion problem.

Conversely, if \(u \in K \) and there exists \(\mu \) satisfying (27), then \(u \) is the solution of (26).
In

S.G., A. Maugeri, New results on infinite dimensional duality in elastic-plastic torsion, Filomat 26 (5), 1029-1036 (2012);

S.G., A. Maugeri, A measure-type Lagrange multiplier for the elastic-plastic torsion. Nonlinear Analysis: Theory, Methods & Applications, 102, 23-29 (2014);

we generalize the result by Brezis, proving that, in the case of linear operator \mathcal{L},

- the Lagrange multipliers associated with the elastic-plastic torsion problem always exist and, in general, they result as a Radon measure;
- under the assumption S, L^2 Lagrange multipliers exist.
Moreover, in

we consider the nonlinear problem:

Find \(u \in K = \left\{ v \in W_0^{1, \infty}(\Omega) : |Dv| \leq 1 \text{ a.e. on } \Omega \right\} \)

such that

\[
\int_{\Omega} \sum_{i=1}^{n} a_i(Du) \left(\frac{\partial v}{\partial x_i} - \frac{\partial u}{\partial x_i} \right) dx \geq \int_{\Omega} F(v - u) dx, \quad \forall v \in K.
\]

and we prove that

- if the operator is strictly monotone, the Lagrange multipliers always exist and, in general, they result as a Radon measure;
- under strong monotonicity assumption, they are \(L^2 \) functions.
Future work

- The existence of L^2-Lagrange multipliers in the case of f regular.
Future work

- The existence of L^2-Lagrange multipliers in the case of f regular.
- The existence of solutions with axial symmetry;
Future work

- The existence of L^2-Lagrange multipliers in the case of f regular.
- The existence of solutions with axial symmetry;
- The existence of Lagrange multipliers for the problem with non-constant gradient constraints associated with a nonlinear monotone operator.