On hysteresis reaction-diffusion systems and an application in population dynamics

Klemens Fellner

Joint works with Martin Brokate (TUM) and Christian Münch

Institute for Mathematics and Scientific Computing
University of Graz
1. Singular fast-reaction limit derivation of hysteresis RD systems

2. Nonlinear hysteresis feedback and hysteresis induced blow up

3. Weak differentiability of a class of control-to-state maps
Outline

1. Singular fast-reaction limit derivation of hysteresis RD systems
2. Nonlinear hysteresis feedback and hysteresis induced blow up
3. Weak differentiability of a class of control-to-state maps
A population-stock model

We consider a (nonlinear) population dynamical PDE-ODE model

\[\partial_t u - D \Delta u = \lambda(N, F, S) u \quad \text{in } [0, T] \times \Omega, \]
\[\partial_\nu u = 0 \quad \text{on } [0, T] \times \partial \Omega, \]
\[u(0) = u_{in} \quad \text{in } \Omega, \]

with total population \(N = \int_\Omega u(x) dx \Rightarrow \dot{N}(t) = \lambda N(t), \ N_{in} = \int_\Omega u_{in} dx. \)

A given \(F \) food supply feeds a stock \(S \) with fast (\(\varepsilon \ll 1 \)) turnover

\[\varepsilon \dot{S} = N \left(f - c(N, f, S) \right) \quad \text{in } [0, T], \]
\[S(0) = S_{in} \geq 0, \]

\(f = F/N \) individual food supply,

The \(c(N, f, S) \) food consumption rate depends on \(N, f \) and \(S \).
Phase space diagram of the stock dynamics

An unbounded consumption rate ensuring limited stock $S \leq S_{\text{max}}$

\[
c = \begin{cases}
 f + \frac{S}{N} \left(1 - e^{-N\left(1 - f/U^{-1}(S)\right)}\right) & \text{if } f < U^{-1}(S), \\
 f & \text{if } U^{-1}(S) \leq f \leq L^{-1}(S), \\
 fe^{-(S_{\text{max}} - S)_+} + L^{-1}(S) \left(1 - e^{-(S_{\text{max}} - S)_+}\right) & \text{if } f > L^{-1}(S).
\end{cases}
\]
Main theorem: singular limit to hysteresis RD system

Theorem Under "natural" assumptions holds in the limit $\varepsilon \to 0$

\[u_\varepsilon \to u_0 \quad \text{in} \quad W^{1,q}(0, T; L^2(\Omega)) \cap L^q(0, T; H^2(\Omega)) \quad \forall q \in [2, \infty) \]
\[S_\varepsilon \to S_0 \quad \text{in} \quad L^q(0, T). \]

Limit (u_0, S_0) solves uniquely the hysteresis (general play) RD system

\[
\partial_t u_0 - D\Delta u_0 = \left(\frac{c(S_0, N_0, F)}{c_{\min}} - 1 \right) u_0 \quad \text{a.e. in } (0, T) \times \Omega,
\]
\[
\rho_n u_0 = 0 \quad \text{a.e. in } (0, T) \times \partial \Omega,
\]
\[
u_0(0) = u_{in} \quad \text{a.e. in } \Omega,
\]
\[
\dot{S}_0(t)(S_0(t) - z) \leq 0 \quad \text{for all } \ z \in [L(f_0(t)), U(f_0(t))] \quad \text{a.e. in } [0, T],
\]
\[
S_0(0) = \min\{\max\{L(f_0(0)), S_{in}\}, U(f_0(0))\} \quad f_0(0) = F(0)/N_0(0),
\]
\[
S_0(t) \in [L(f_0(t)), U(f_0(t))] \quad \text{in } [0, T].
\]
Main theorem: singular limit to hysteresis RD system

Proof of Theorem One key problem is lack uniform bounds on \dot{S}_ε. This is bypassed by introducing a projection operator p_ε and suitable error/monotonicity estimates.

\[
\begin{align*}
\dot{S}_\varepsilon &< 0 & \text{if } f_\varepsilon < c & \Rightarrow u(f_\varepsilon) < p_\varepsilon \\
\dot{S}_\varepsilon &= 0 & \text{if } f_\varepsilon = c & \Rightarrow S_\varepsilon = p_\varepsilon \\
\dot{S}_\varepsilon &> 0 & \text{if } f_\varepsilon > c & \Rightarrow l(f_\varepsilon) > p_\varepsilon \\
\end{align*}
\]

Figure: Sign of the gradient of S_ε and projection to p_ε in the f_ε-S_ε-phase diagram.
A numerical example with periodic food supply

Figure: Evolution of the population-hysteresis-diffusion system subject to the time-periodic food supply $F(t) = 0.2(1 - \cos(t))$ (blue) and the resulting population size N (red) and stock S (yellow).
Outline

1. Singular fast-reaction limit derivation of hysteresis RD systems

2. Nonlinear hysteresis feedback and hysteresis induced blow up

3. Weak differentiability of a class of control-to-state maps
A simplest hysteresis reaction-diffusion model

We consider

\[\partial_t y - D \Delta y = Ry \quad \text{on} \quad \Omega \times (0, \infty), \]
\[\partial_{\nu} y = 0 \quad \text{on} \quad \partial \Omega \times (0, \infty), \]
\[y(0) = y_0 \quad \text{on} \quad \Omega, \]

\(Ry = R(Ty, R_0) \) is a generalised scalar play operator and \(Ty \) is a projection onto spatially heterogeneous eigenfunctions \(\{ \phi_k \}_{k \geq 1} \)

\[Ty := \underbrace{k_m \langle y, \phi_m \rangle}_{>0} + \sum_{i=m+1}^{M-1} \underbrace{k_i \langle y, \phi_i \rangle}_{\geq 0} + \underbrace{k_M \langle y, \phi_M \rangle}_{>0}, \quad 1 \leq m < M \]
Spatial homogenisation versus grow-up

\[
(T_y^{\text{cave}}(t), R^{\text{cave}}(t)) \text{ for } t \in [0,6]; (T_y^{\text{cave}}(0), R^{\text{cave}}(0)) = (1.77,1.50)
\]

\[
(T_y^{\text{vex}}(t), R^{\text{vex}}(t)) \text{ for } t \in [0,6]; (T_y^{\text{vex}}(0), R^{\text{vex}}(0)) = (1.77,1.50)
\]
Outline

1. Singular fast-reaction limit derivation of hysteresis RD systems
2. Nonlinear hysteresis feedback and hysteresis induced blow up
3. Weak differentiability of a class of control-to-state maps
Model

We consider the control problem

\[y_t - \Delta y = u + \mathcal{W}[y], \quad \text{in} \quad \Omega_T, \quad \text{(1a)} \]
\[\mathcal{B}[y] = 0, \quad \text{on} \quad \Gamma_T, \quad \text{(1b)} \]
\[y(\cdot, 0) = y_0, \quad \text{on} \quad \Omega. \quad \text{(1c)} \]

\(\mathcal{B} \) is a standard mixed Dirichlet Neumann boundary operators.

\(\mathcal{W} \) is a space-dependent version of a scalar operator \(\mathcal{V} \), i.e.

\[\mathcal{W}[y](x, t) = \mathcal{V}[y(x, \cdot)](t), \quad (x, t) \in \Omega \times [0, T]. \]

Thus, \(\mathcal{W} \) represents a family of operators acting on \(y(x, \cdot) \), viewed as a function of time, at every \(x \in \Omega \).
Underlying assumptions

- **Lipschitz continuous Volterra operator**, i.e. there exists an $L > 0$:

 $$
 \mathcal{V} : \left\{ C[0, T] \rightarrow C[0, T], \right. \\
 \left. |\mathcal{V}[\nu](t) - \mathcal{V}[\tilde{\nu}](t)| \leq L \sup_{0 \leq s \leq t} |\nu(s) - \tilde{\nu}(s)|, \right.
 $$

 for every $\nu, \tilde{\nu} \in C[0, T]$ and every $t \in [0, T]$.

- **Linear growth**

 $$
 |\mathcal{V}[\nu](t)| \leq L \sup_{0 \leq s \leq t} |\nu(s)| + c_0
 $$

 for the same arguments as above and some $c_0 > 0$.

 Satisfied by many hysteresis operators, see [BS,Vis,MR].
[Visintin 1994]: System (1) has a unique solution and a well-defined control-to-state operator for any given $u \in L^2(\Omega_T)$

$$y = Su,$$

$$S : L^2(\Omega_T) \rightarrow H^1(0, T; L^2(\Omega)) \cap L^\infty(0, T; V),$$

If S were Fréchet differentiable, we would have for an increment $h \in L^2(\Omega_T)$

$$S(u + h) = Su + S'(u)h + o(\|h\|),$$

and $d = S'(u)h$ would be the linear first order approximation to the difference $S(u + h) - Su$.
First order system

For given \(y = Su \) and \(h \), determine functions \(d \) and \(\omega \) as solutions of

\[
\begin{align*}
\frac{d_t}{dt} - \Delta d &= h + \omega, &\text{in } \Omega_T, \\
\omega &= \mathcal{W}'[y; d], &\text{in } \Omega_T, \\
B[d] &= 0, &\text{on } \Gamma_T, \\
d(\cdot, 0) &= 0, &\text{on } \Omega.
\end{align*}
\]

Here, \(\omega = \mathcal{W}'[y; d] \) stands for some type of derivative of \(\mathcal{W} \) at \(y \) which involves the direction \(d \).

The first order system is nonlinear if the mapping \(d \mapsto \omega \) is nonlinear.

We do not assume that the derivative depends linearly on the direction \(d \), which is not true for hysteresis operators.
Main result: Bouligand and Newton differentiability

[Brokate]: \(\mathcal{V} \) is Bouligand and Newton differentiable as operator from \(W^{1,p}(0, T) \) to \(L^r(0, T) \) for \(1 < p < \infty \).

If \(F : O \subset X \to Y \) possesses a directional derivative \(F^{BD}(u; h) \) for all \(u \in O, h \in X \) with the property that

\[
\lim_{h \to 0} \frac{\| F[u + h] - F[u] - F^{BD}[u; h] \|}{\| h \|} = 0,
\]

then \(F \) is **Bouligand differentiable** with Bouligand derivative \(F^{BD} \).

Theorem The control-to-state mapping \(u \mapsto y = Su \) is Bouligand resp. Newton differentiable when considered as an operator

\[
S : L^{2+\epsilon}(0, T; L^\infty(\Omega)) \to H^1(0, T; L^2(\Omega)) \cap L^\infty(0, T; V)
\]

for sufficiently small \(\epsilon > 0 \). Moreover, the derivative is given by the solution \(d \) of the first order problem (2).
Summary:

- Hysteresis RD model as fast reaction limits
- Hysteresis diffusion driven instability
- Hysteresis RD models open for optimality conditions and semi-smooth Newton methods
- Proofs need to deal with the hysteresis non-locality in time

THANK YOU!