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Abstract

The Stein’s lemma characterizes the Gaussian distribution via an
integration-by-parts formula.

We show that a similar integration-by-parts formula characterizes a
wide class of Gaussian processes, the so-called Gaussian Fredholm
processes. These processes include rough long-range dependent
fractional processes like the fractional Brownian motions.
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Stein’s (Multivariate) Lemma

Stein’s Lemma, a.k.a. the Integration-by-Parts
Characterization, states that a random variable X is standard
normal if and only if

E
[
Xf ′(X )

]
= E

[
f ′′(X )

]
for all smooth and bounded enough f : R→ R.

Multivariate Stein’s Lemma states that X = (X1, . . . ,Xd) is
centered Gaussian with covariance R if and only if

E

[
d∑

i=1

Xi
∂

∂xi
f (X )

]
= E

 d∑
i=1

d∑
j=1

Rij
∂2

∂xi∂xj
f (X )


for all smooth and bounded enough f : Rd → R
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Stein’s (Multivariate) Lemma

Let X = (Xt)t∈[0,1] be a centered process with covariance R. The
Multivariate Stein’s Lemma suggests us to guess (wrongly!)
that X is Gaussian if and only if

E

[∫ 1

0
XtDt f (X )dt

]
= E

[∫ 1

0

∫ 1

0
R(t, s)D2

t,s f (X ) dsdt

]
,

where D is some kind of Malliavin Derivative.
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Fredholm Representation
The Theorem

Theorem (Fredholm Representation)

Let X = (Xt)t∈[0,1] be a separable centered Gaussian process.
Assume the very mild trace condition∫ 1

0
R(t, t) dt <∞.

Then there exists a kernel K ∈ L2 × L2 = L2([0, 1]2) and a
Brownian motion W = (Wt)t∈[0,1] such that

Xt
d
=

∫ 1

0
K (t, s) dWs ,

where d stands for equality in law in L2.

9 / 18



Outline

1 Stein’s (Multivariate) Lemma

2 Fredholm Representation

3 Pathwise Malliavin Differentiation

4 Strong Form Integration-by-Parts
Characterization

5 Weak Form Integration-by-Parts
Characterization

10 / 18



Pathwise Malliavin Differentiation

Let C∞p (Rn) denote the space of all polynomially bounded
functions with polynomially bounded partial derivatives of all
orders. Consider functionals f : L2 → C of the form

f (x) = g (z1(x), . . . , zn(x)) ,

where n ∈ N and g ∈ C∞p (Rn), and

zk(x) =

∫ 1

0
ek(t) dx(t)

for some step functions ek ∈ E . For such f we write f ∈ S.

The pathwise Malliavin derivative of such f ∈ S is

Dt f (x) =
n∑

k=1

∂

∂zk
g(z1(x), . . . , zn(x)) ek(t).
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Pathwise Malliavin Differentiation

More generally, by iteration for every m ∈ N, the pathwise
Malliavin derivative of order m is defined as follows: for every
t1, ..., tm ∈ [0, 1],

Dm
tm,...,t1f (x)

=
∑

1≤k1,...,km≤n

∂m

∂zk1 · · · ∂zkm
g(zk1(x), ..., zkn(x))

× (ek1 ⊗ · · · ⊗ ekm) (t1, ..., tm).

Remark

Let f ∈ S and y ∈ L2. Let ∇ be the Fréchet derivative. Let
Iy(t) =

∫ t
0 y(s)ds. Then

〈∇f (x), Iy〉L2 = 〈Df (x), y〉L2
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Strong Form Integration-by-Parts
Characterization

Let 1t = 1[0,t). Let K ∗ extend linearly K ∗1t(·) = K (t, ·).

Remark ∫ 1

0
K ∗f (t)g(t) dt =

∫ 1

0
f (t)Kg(dt),

where

Kg(t) =

∫ 1

0
g(s)K (t, s) ds.

Example

If K (·, s) has bounded variation and f is nice enough, then

K ∗f (s) =

∫ 1

0
f (t)K (dt, s).
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Strong Form Integration-by-Parts
Characterization

Theorem

Let K ∈ L2 × L2. The co-ordinate process X : Ω→ L2 is centered
Gaussian with Fredholm kernel K if and only if

E [XtDt f (X )] = E

[∫ 1

0
K (t, s)K ∗

[
D2
t, · f (X )

]
(s) ds

]
for all t ∈ [0, 1] and f ∈ S.
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Weak Form Integration-by-Parts
Characterization

By using Fubini to the Strong IBP Formula, we obtain

Theorem (Weak Integration-by-Parts
Characterization)

Let K ∈ L2 × L2. Assume that the co-ordinate process X : Ω→ L2

satisfies X ∈ L2(dt ⊗ P), i.e.∫ 1

0
E
[
X 2
t

]
dt <∞.

Then X is centered Gaussian with the Fredholm kernel K if and
only if

E

[∫ 1

0
XtDt f (X ) dt

]
= E

[∫ 1

0

∫ 1

0
K (t, s)K ∗

[
D2
t, · f (X )

]
(s) dsdt

]
for all f ∈ S.
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Thank you for listening!

Any questions?
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