Spanning bipartite subgraphs of triangulations of a surface

Kenta Noguchi (野口 健太)
Tokyo University of Science (東京理科大学)
Our papers
(Atsuhiro Nakamoto, Kenta Noguchi, Kenta Ozeki)

[2] Extension to even triangulations,

[3] Spanning bipartite quadrangulations of even triangulations,
J. Graph Theory **90** (2019), 267-287.

[4] Extension to 3-colorable triangulations,
Surfaces:
compact connected 2-manifolds without boundary

\(\mathcal{S}_k \): orientable surface of genus \(k \)

\(\mathcal{N}_k \): nonorientable surface of crosscap number \(k \)
Graphs on surfaces

Triangulation (tri.)

\(T \)

Quadrangulation (quad.)

\(Q \)
Graphs on surfaces

Eulerian (even) triangulation

Every vertex has even degree

Quadrangulation
For a given quad., we can extend it to a triangulation by adding a diagonal in each face.
Quad. ↔ Tri.

For a given triangulation, we often find a quad. as a spanning subgraph.
Additional requirements

For a given quad., can we extend it to

• Eulerian tri.?
• 3-colorable tri.?
• 4-connected tri.?

For a given tri., does it have

• bipartite quad.?
• 3-connected quad.?
Additional requirements

For a given quad., can we extend it to

[2] • Eulerian tri.? Yes
[4] • 3-colorable tri.? \(\exists \) iff condition
 • 4-connected tri.? Yes if it is simple

For a given tri., does it have

[3] • bipartite quad.? \(\exists \) iff condition for toroidal Eulerian tri.
 • 3-connected quad.? Yes if it is 5-connected
A spanning quad. subgraph

\[T \]
Proposition A
Let T be a loopless triangulation on a surface. Then T has a spanning quad.
Proof
Problem

Let T be a loopless triangulation of a surface. Does T have a spanning bipartite quad.?

Remark

- Every plane quad. is bipartite.
- 4-colorability of T is a sufficient condition.
Proposition B
If T is a 4-colorable tri. on a surface, then T has a spanning bipartite quad.
Proposition B
If T is a 4-colorable tri. on a surface, then T has a spanning bipartite quad.
Proposition B
If T is a 4-colorable tri. on a surface, then T has a spanning bipartite quad.
On the projective plane

Theorem 1 (Kündgen, Thomassen, 2017; Nakamoto, N., Ozeki, 2019)
Let T be an Eulerian tri. of the projective plane.
If T is 3-colorable, then every spanning quad. of T is bipartite. If T is not 3-colorable, then T has both bipartite and non-bipartite spanning quads.
On the torus

Fact
Even tri. K_7 of the torus has no spanning bipartite quad.
A known theorem

Theorem C (Kündgen, Thomassen, 2017)

Let T be a loopless Eulerian tri. of the torus. Then T has a spanning non-bipartite quad. Furthermore, if T has sufficiently large edge width, then T has a spanning bipartite quad.
Main theorem

Theorem 2 (Nakamoto, N., Ozeki, 2019)
Let T be a loopless Eulerian tri. of the torus. T has a spanning bipartite quad. if and only if T does not have K_7 as a subgraph.
We use a “generating” theorem.

Theorem D (Matsumoto, Nakamoto, Yamaguchi, 2018)
Every loopless Eulerian tri. of the torus is generated from one of 27 minimal graphs and 6-regular tris. by using 4-splittings and 2-vertex additions.
Generating Eulerian tris.

Eulerian tris. on the torus

$|V(T)|$

K_7

: Minimal graph

: 4-splitting

: 2-vertex addition
27 minimal graphs
Two operations for the generating theorem

4-contraction

4-splitting

2-vertex removal

2-vertex addition
2-vertex addition

\[T' \]

\[T'' \]

\[T \]
4-splitting

T'

T''

T
Outline of the Proof of Thm 2

We use the generating theorem.

(i) Confirming that all minimal graphs other than K_7 have a spanning bipartite quad.

(ii) Showing that the bipartiteness of a spanning quad. is preserved under the two operations.

Theorem 2 (Nakamoto, N., Ozeki, 2019)

Let T be a loopless Eulerian tri. of the torus. T has a spanning bipartite quad. if and only if T does not have K_7 as a subgraph.
Spanning bipartite quads.
Conclusion

For a given quad., can we extend it to

[2] • Eulerian tri.? Yes

[4] • 3-colorable tri.? \(\exists \) iff condition
• 4-connected tri.? Yes if it is simple

For a given tri., does it have

[3] • bipartite quad.? \(\exists \) iff condition for toroidal Eulerian tri.
• 3-connected quad.? Yes if it is 5-connected
Thank you!