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Motivations

Model Order Reduction is
essential

and it can also be used
for data-driven control.

1Robust control of in�nite dimensional systems: frequency-domain methods, Foias, Ozbya, Tannenbuam, 1969

2Control of systems governed by partial di�erential equations, Morris, Levine, The control theory handbook, 2010.
3From reference model selection to controller validation: Application to Loewner Data-Driven Control, Kergus,
Olivi, Poussot-Vassal, Demourant, IEEE Control Systems Letters, 2019.
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Case study: the continuous crystallizer

Goal: stabilize the plant aroundcss = 4 :09mol=L

Unstable system and sustained oscillations

Linearization of the PDEs aroundcss

P(s) =
� c(s)
� cf (s)

=
p12(s)

p13(s) + q12(s)e� skf + r12(s)e� skp

! Frequency-domain data easily accessible
N = 500 frequencies, logspaced between 10� 3 and 1 rad.s� 1

1. A mathematical model for continuous crystallization, Rachah, Noll, Espitalier, Baillon, Mathematical Methods in
the Applied Sciences, 2016.

2. H 1 -Control of a continuous crystallizer, Vollmer, Raisch, Control Engineering Practice, 2001.

3. Structured H 1 -control of in�nite dimensional systems, Apkarian, Noll, International Journal of Robust and
Nonlinear Control, 2018.
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L-DDC Step 1: Building a reference model

�
yT

zi
P(zi ) = 0

ypj P(pj ) = 1
)

�
yzi

T M(zi ) = 0
M(pj )ypj = y pj

1 Determine the system's nature: stable/unstable, NMP or not
2 If any, estimate the instabilities of the system
3 Build an achievable reference model

Achievable performance of multivariable systems with unstable zeros and poles, Havre, Skogestad,International
Journal of Control, 2001.

Estimating unstable poles in simulations of microwave circuits, Cooman, Seyfert, Amari, International Microwave
Symposium, 2018.
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LDDC Step 2: Controller identi�cation and reduction

Objective : obtain a rational model K = (E; A; B; C; D) such that:

8i = 1 : : : N; K({! i ) = K ? ({! i ) =
M (|! i )

P(|! i )(1 � M (|! i ))
:

SVD of L. Obtained controllers.

A tutorial introduction to the Loewner framework for model reduction , Antoulas, Lefteriu, Ionita, Benner, Cohen,
Model Reduction and Approximation: Theory and Algorithms, 2017. 9 / 13
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LDDC Step 3: Closed-loop stability analysis

Application of the small-gain theorem

The closed-loop is well-posed and internally stable for all stable � =K � K ?

such that k� k1 � � if and only if k(1 � M)Pk1 < 1
�

! Limiting the controller modelling error allows to ensure closed-loop internal
stability!
Data-driven controller validation , Van Heusden, Karimi, Bonvin, IFAC Proceedings, 2009.
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Alternative closed-loop stability analysis

H(|! i ) =
P(|! i )Kr (|! i )

1 + P(|! i )Kr (|! i )

1st option

1 Loewner interpolation:
Ĥ (|! i ) = H(|! i )

2 Stable projection on RH 1 :
Ĥs = arg min

H2 S+
n; ni ; no

kH � Ĥk1

3 Stability index S = kĤs � Ĥk1

S = 4 :3511 � 10� 6

1. Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard,
Baratchart, IEEE Transactions on Microwave Theory and Techniques, 2018

2. Interpolation-based in�nite dimensional model control design and stability analysis, Poussot-Vassal, Kergus,
Vuillemin, chapter to appear.
3. On the closest stable descriptor system in the respective spacesRH 2 and RH 1 , K•ohler, Linear Algebra and
its Applications, 2014.
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S = 4 :3511 � 10� 6

1. Model-free closed-loop stability analysis: A linear functional approach, Cooman, Seyfert, Olivi, Chevillard,
Baratchart, IEEE Transactions on Microwave Theory and Techniques, 2018
2. Interpolation-based in�nite dimensional model control design and stability analysis, Poussot-Vassal, Kergus,
Vuillemin, chapter to appear.
3. On the closest stable descriptor system in the respective spacesRH 2 and RH 1 , K•ohler, Linear Algebra and
its Applications, 2014.

11 / 13



Introduction Application Conclusion

Alternative closed-loop stability analysis

H(|! i ) =
P(|! i )Kr (|! i )

1 + P(|! i )Kr (|! i )

1st option 2nd option

1 Loewner interpolation:
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