On some fractional problems with Dirichlet-Neumann boundary conditions

Eduardo Colorado

Universidad Carlos III de Madrid (UC3M)

Research Project PID2019-106122GB.I00

8 ECM 2020 (Portoroz, 25th June 2021)
The main results of the talk are collected in:

The main results of the talk are collected in:

Scheme of the talk

Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable

- Sobolev and Trace Inequalities
Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable

- Sobolev and Trace Inequalities

- Attainability of the Sobolev constant
Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
- Sobolev and Trace Inequalities
- Attainability of the Sobolev constant
- Brezis-Nirenberg fractional problem with mixed Dirichlet-Neumann (D-N) boundary conditions
Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition) and extended problem to one more variable
- Sobolev and Trace Inequalities
- Attainability of the Sobolev constant
- Brezis-Nirenberg fractional problem with mixed Dirichlet-Neumann (D-N) boundary conditions
- Fractional elliptic problems involving an inverse fractional operator
Fractional Laplacian with D-N boundary data

Powers of Laplacian operator \((-\Delta)\):

Let \((\lambda_n, \varphi_n)\) be the eigenvalues and eigenfunctions of \((-\Delta)\) in \(\Omega\) with zero mixed D-N boundary data. Then \((\lambda_n^s, \varphi_n)\) are the eigenvalues and eigenfunctions of \((-\Delta)^s\), also with zero D-N boundary conditions.
Fractional Laplacian with D-N boundary data

Powers of Laplacian operator \((-\Delta)\):

Let \((\lambda_n, \varphi_n)\) be the eigenvalues and eigenfunctions of \((-\Delta)\) in \(\Omega\) with zero mixed D-N boundary data. Then \((\lambda_n^s, \varphi_n)\) are the eigenvalues and eigenfunctions of \((-\Delta)^s\), also with zero D-N boundary conditions.

The fractional Laplacian \((-\Delta)^s\) is well defined in the space of functions that vanish on \(\Sigma_D\),

\[
H^s_{\Sigma_D}(\Omega) = \left\{ u = \sum_{n \geq 1} a_n \varphi_n \in L^2(\Omega) : \|u\|_{H^s_{\Sigma_D}(\Omega)}^2 = \sum_{n \geq 1} a_n^2 \lambda_n^s < \infty \right\}.
\]
Fractional Laplacian with D-N boundary data

Powers of Laplacian operator \((-\Delta)\):

Let \((\lambda_n, \varphi_n)\) be the eigenvalues and eigenfunctions of \((-\Delta)\) in \(\Omega\) with zero mixed D-N boundary data. Then \((\lambda_n^s, \varphi_n)\) are the eigenvalues and eigenfunctions of \((-\Delta)^s\), also with zero D-N boundary conditions.

The fractional Laplacian \((-\Delta)^s\) is well defined in the space of functions that vanish on \(\Sigma_D\),

\[
H_{\Sigma_D}^s(\Omega) = \left\{ u = \sum_{n \geq 1} a_n \varphi_n \in L^2(\Omega) : \|u\|_{H_{\Sigma_D}^s(\Omega)}^2 = \sum_{n \geq 1} a_n^2 \lambda_n^s < \infty \right\}.
\]

As a consequence,

\[
(-\Delta)^s u = \sum_{n \geq 1} \lambda_n^s a_n \varphi_n.
\]

Note that then \(\|u\|_{H_{\Sigma_D}^s(\Omega)} = \|(-\Delta)^{s/2} u\|_{L^2(\Omega)}.\)
Fractional Laplacian with D-N boundary data

Following [LM]

- $H^s_0(\Omega) = H^s(\Omega)$ for $0 < s \leq \frac{1}{2}$.
- $H^s_0(\Omega) \subsetneq H^s(\Omega)$ for $\frac{1}{2} < s < 1$.

Fractional Laplacian with D-N boundary data

Following [LM]

\[H^s_0(\Omega) = H^s(\Omega) \text{ for } 0 < s \leq \frac{1}{2}. \]

\[H^s_0(\Omega) \subsetneq H^s(\Omega) \text{ for } \frac{1}{2} < s < 1. \]

As a consequence

\[H^s_{\Sigma_D}(\Omega) = H^s(\Omega) \text{ for } 0 < s \leq \frac{1}{2}. \]

\[H^s_{\Sigma_D}(\Omega) \subsetneq H^s(\Omega) \text{ for } \frac{1}{2} < s < 1. \]
For the general problem

\[
(P) \quad \begin{cases}
(-\Delta)^s u = f(x, u) & \text{in } \Omega, \\
B(u) = 0 & \text{on } \partial\Omega,
\end{cases}
\]

where we take mixed Dirichlet-Neumann boundary conditions,

\[B(u) = \chi_{\Sigma_D} u + \chi_{\Sigma_N} \frac{\partial u}{\partial \nu}.\]
Fractional Laplacian with D-N boundary data

For the general problem

\[
(P) \quad \begin{cases}
(\Delta)^s u = f(x, u) & \text{in } \Omega, \\
B(u) = 0 & \text{on } \partial\Omega,
\end{cases}
\]

where we take mixed Dirichlet-Neumann boundary conditions,

\[
B(u) = \chi_{\Sigma_D} u + \chi_{\Sigma_N} \frac{\partial u}{\partial \nu}.
\]

- \(\Sigma_D\) and \(\Sigma_N\) are smooth \((N-1)\)-dimensional submanifolds of \(\partial\Omega\).
- \(\Sigma_D\) is a closed manifold of positive \((N-1)\)-dimensional Hausdorff measure,

\[
\mathcal{H}^{N-1}(\Sigma_D) = \alpha \in (0, \mathcal{H}^{N-1}(\partial\Omega)).
\]

- \(\Sigma_D\) and \(\Sigma_N\) verify \(\Sigma_D \cap \Sigma_N = \emptyset\), \(\Sigma_D \cup \Sigma_N = \partial\Omega\), \(\Sigma_D \cap \overline{\Sigma_N} = \Gamma\), where \(\Gamma\) is a smooth \((N-2)\)-dimensional submanifold of \(\partial\Omega\).
Fractional Laplacian with D-N boundary data

\[(P_{\lambda}) \begin{cases} \begin{align*}
(-\Delta)^s u &= \lambda u + u \frac{N+2s}{N-2s}, \quad u > 0 \quad \text{in } \Omega, \\
B(u) &= 0 \quad \text{on } \partial \Omega,
\end{align*} \end{cases} \]

where \(\lambda > 0 \), and \(\Omega \subset \mathbb{R}^N \), with \(N > 2s \), \(\frac{1}{2} < s < 1 \).

Fractional Laplacian with D-N boundary data

\[(P_\lambda) \begin{cases} (-\Delta)^s u = \lambda u + u \frac{N+2s}{N-2s}, & u > 0 \quad \text{in } \Omega, \\ B(u) = 0 & \text{on } \partial \Omega, \end{cases}\]

where \(\lambda > 0\), and \(\Omega \subset \mathbb{R}^N\), with \(N > 2s, \frac{1}{2} < s < 1\).

Sense of weak/energy solution

\[\int_\Omega (-\Delta)^{s/2} u (-\Delta)^{s/2} \varphi \, dx = \int_\Omega f_\lambda(u) \varphi \, dx, \quad \forall \varphi \in H^s_{\Sigma_D}(\Omega).\]

We also have an associated energy functional \((2^* = \frac{2N}{N-2s})\)

\[I(u) = \frac{1}{2} \int_\Omega \left| (-\Delta)^{s/2} u \right|^2 \, dx - \frac{\lambda}{2} \int_\Omega u^2 \, dx - \frac{1}{2^*} \int_\Omega u^{2^*} \, dx\]

which is well defined in \(H^s_{\Sigma_D}(\Omega)\). Clearly, the critical points of \(I\) correspond to solutions to \((P_\lambda)\).
Extended problems to one more variable

Consider the cylinder $C_\Omega = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$. Given $u \in H^s_{\Sigma_D}(\Omega)$, we define its s-harmonic extension $w = E_s(u)$ to the cylinder C_Ω as the solution to the problem

$$
\begin{cases}
-\text{div}(y^{1-2s}\nabla w) = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial_L C_\Omega = \partial \Omega \times [0,\infty), \\
w = u & \text{on } \Omega \times \{y = 0\}.
\end{cases}
$$

where

$$B^*(w) = w\chi_{\Sigma_D^*} + \frac{\partial w}{\partial \nu}\chi_{\Sigma_N^*},$$

with $\Sigma_D^* = \Sigma_D \times [0,\infty)$ and $\Sigma_N^* = \Sigma_N \times [0,\infty)$.
Extended problems to one more variable

Consider the cylinder $C_\Omega = \Omega \times (0, \infty) \subset \mathbb{R}_+^{N+1}$. Given $u \in H^{s}_{\Sigma_D}(\Omega)$, we define its s-harmonic extension $w = E_s (u)$ to the cylinder C_Ω as the solution to the problem

$$
\begin{cases}
-\text{div}(y^{1-2s}\nabla w) = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial_L C_\Omega = \partial \Omega \times [0, \infty), \\
w = u & \text{on } \Omega \times \{y = 0\}.
\end{cases}
$$

where

$$
B^*(w) = \frac{\partial w}{\partial \nu} \chi_{\Sigma_N^*},
$$

with $\Sigma_D^* = \Sigma_D \times [0, \infty)$ and $\Sigma_N^* = \Sigma_N \times [0, \infty)$.

The extension function belongs to the space $X^{s}_{\Sigma_D^*}(C_\Omega)$ defined as the completion of $\{z \in C^\infty(C_\Omega) : z = 0 \text{ on } \Sigma_D^*\}$ with respect to the norm

$$
\|z\|_{X^{s}_{\Sigma_D^*}(C_\Omega)} = \left(\kappa_s \int_{C_\Omega} y^{1-2s}|\nabla z|^2 \, dx \, dy \right)^{1/2}
$$

where κ_s is a normalization constant.
Extended problems to one more variable

Consider the cylinder $C_{\Omega} = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}$. Given $u \in H^s_{\Sigma_D}(\Omega)$, we define its s-harmonic extension $w = E_s(u)$ to the cylinder C_{Ω} as the solution to the problem

$$
\begin{aligned}
-\text{div}(y^{1-2s}\nabla w) &= 0 & \text{in } C_{\Omega}, \\
B^*(w) &= 0 & \text{on } \partial_L C_{\Omega} = \partial \Omega \times [0, \infty), \\
w &= u & \text{on } \Omega \times \{y = 0\}.
\end{aligned}
$$

where

$$B^*(w) = w\chi_{\Sigma_D^*} + \frac{\partial w}{\partial \nu} \chi_{\Sigma_N^*},$$

with $\Sigma_D^* = \Sigma_D \times [0, \infty)$ and $\Sigma_N^* = \Sigma_N \times [0, \infty)$.

Note that the extension operator is an isometry

$$
\|E_s(\psi)\|_{X^s_{\Sigma_D^*}(C_{\Omega})} = \|\psi\|_{H^s_{\Sigma_D}(\Omega)}, \quad \forall \psi \in H^s_{\Sigma_D}(\Omega).
$$
Extended problems to one more variable

Consider the cylinder $C_\Omega = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$. Given $u \in H^s_{\Sigma_D}(\Omega)$, we define its s-harmonic extension $w = E_s(u)$ to the cylinder C_Ω as the solution to the problem

$$
\begin{cases}
-\text{div}(y^{1-2s} \nabla w) = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial_L C_\Omega = \partial \Omega \times [0, \infty), \\
w = u & \text{on } \Omega \times \{y = 0\}.
\end{cases}
$$

where

$$B^*(w) = w \chi_{\Sigma_D^*} + \frac{\partial w}{\partial \nu} \chi_{\Sigma_N^*},$$

with $\Sigma_D^* = \Sigma_D \times [0, \infty)$ and $\Sigma_N^* = \Sigma_N \times [0, \infty)$.

Note that the extension operator is an isometry

$$\|E_s(\psi)\|_{X^{s}_{\Sigma_D^*}(C_\Omega)} = \|\psi\|_{H^s_{\Sigma_D}(\Omega)}, \quad \forall \psi \in H^s_{\Sigma_D}(\Omega).$$

Moreover, for any $\varphi \in X^{s}_{\Sigma_D^*}(C_\Omega)$, we have the following trace inequality

$$\|\varphi\|_{X^{s}_{\Sigma_D^*}(C_\Omega)} \geq \|\varphi(\cdot, 0)\|_{H^s_{\Sigma_D}(\Omega)}.$$
Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$-\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y}(x, y) = (-\Delta)^s u(x),$$
Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$-\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y}(x, y) = (-\Delta)^s u(x),$$

See:

Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$-\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y}(x, y) = (-\Delta)^s u(x),$$

See:

See also:

Extended problems to one more variable

Denoting

\[L_s w := -\text{div}(y^{1-2s} \nabla w) , \quad \frac{\partial w}{\partial \nu^s} := -\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y} \]

we can reformulate \((P_\lambda)\) with the new variable as

\[
(P^*_\lambda) \quad \begin{cases}
L_s w = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial L C_\Omega, \\
\frac{\partial w}{\partial \nu^s} = \lambda w + w^{\frac{N+2s}{N-2s}} & \text{in } \Omega \times \{y = 0\}.
\end{cases}
\]
Extended problems to one more variable

Denoting

\[L_s w := -\text{div}(y^{1-2s} \nabla w), \quad \frac{\partial w}{\partial \nu^s} := -\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y} \]

we can reformulate \((P_\lambda)\) with the new variable as

\[
(P^*_\lambda) \begin{cases}
L_s w = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial_L C_\Omega, \\
\frac{\partial w}{\partial \nu^s} = \lambda w + w \frac{N+2s}{N-2s} & \text{in } \Omega \times \{y = 0\}.
\end{cases}
\]

We say as before that \(w \in X^{s}_{\Sigma^*D}(C_\Omega)\) is an energy solution if

\[
\kappa_s \int_{C_\Omega} y^{1-2s} \langle \nabla w, \nabla \varphi \rangle \, dx \, dy = \int_{\Omega} \left(\lambda w + w \frac{N+2s}{N-2s} \right) \varphi \, dx, \quad \forall \varphi \in X^s_{\Sigma D}(C_\Omega).
\]
Extended problems to one more variable

Denoting

\[L_s w := -\text{div}(y^{1-2s} \nabla w), \quad \frac{\partial w}{\partial \nu^s} := -\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y} \]

we can reformulate \((P_\lambda)\) with the new variable as

\[
(P^*_\lambda) \begin{cases}
L_s w = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial_L C_\Omega, \\
\frac{\partial w}{\partial \nu^s} = \lambda w + w \frac{N+2s}{N-2s} & \text{in } \Omega \times \{y = 0\}.
\end{cases}
\]

We say as before that \(w \in X^s_{\Sigma^*_D}(C_\Omega)\) is an energy solution if

\[
\kappa_s \int_{C_\Omega} y^{1-2s} \langle \nabla w, \nabla \varphi \rangle \, dx \, dy = \int_{\Omega} \left(\lambda w + w \frac{N+2s}{N-2s} \right) \varphi \, dx, \quad \forall \, \varphi \in X^s_{\Sigma^*_D}(C_\Omega).
\]

Energy functional

\[
J(w) = \frac{\kappa_s}{2} \int_{C_\Omega} y^{1-2s} |\nabla w|^2 \, dx \, dy - \frac{\lambda}{2} \int_{\Omega} w^2 \, dx - \frac{1}{2^*_s} \int_{\Omega} w^{2^*_s} \, dx.
\]
Extended problems to one more variable

Denoting

\[L_sw := -\text{div}(y^{1-2s}\nabla w), \quad \frac{\partial w}{\partial \nu^s} := -\kappa_s \lim_{y \searrow 0} y^{1-2s} \frac{\partial w}{\partial y} \]

we can reformulate \((P_\lambda)\) with the new variable as

\[
(P_{\lambda}^*) \begin{cases}
L_sw = 0 & \text{in } C_\Omega, \\
B^*(w) = 0 & \text{on } \partial LC_\Omega, \\
\frac{\partial w}{\partial \nu^s} = \lambda w + w^{\frac{N+2s}{N-2s}} & \text{in } \Omega \times \{y = 0\}.
\end{cases}
\]

We say as before that \(w \in X_{\Sigma_D^*}^s (C_\Omega)\) is an energy solution if

\[
\kappa_s \int_{C_\Omega} y^{1-2s} \langle \nabla w, \nabla \varphi \rangle \, dx \, dy = \int_{\Omega} \left(\lambda w + w^{\frac{N+2s}{N-2s}} \right) \varphi \, dx, \quad \forall \, \varphi \in X_{\Sigma_D}^s (C_\Omega).
\]

Energy functional

\[
J(w) = \frac{\kappa_s}{2} \int_{C_\Omega} y^{1-2s} |\nabla w|^2 \, dx \, dy - \frac{\lambda}{2} \int_{\Omega} w^2 \, dx - \frac{1}{2^{*}} \int_{\Omega} w^{2^{*}} \, dx.
\]

Note that critical points of \(J\) in \(X_{\Sigma_D^*}^s (C_\Omega)\) correspond to critical points of \(I\) in \(H_{\Sigma_D^*}^s (\Omega)\).
Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on Σ_D with $0 < \mathcal{H}^{N-1}(\Sigma_D) < \mathcal{H}^{N-1}(\partial \Omega)$, then

$$0 < C := \inf_{\begin{array}{c} \|u\|_{H^s_{\Sigma_D}(\Omega)} \\
\|u\|_{L^{2^*}_s(\Omega)}
\end{array}} \frac{\|u\|_{H^s_{\Sigma_D}(\Omega)}}{\|u\|_{L^{2^*}_s(\Omega)}}.$$
Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on Σ_D with $0 < \mathcal{H}^{N-1}(\Sigma_D) < \mathcal{H}^{N-1}(\partial\Omega)$, then

$$0 < C := \inf_{u \in H^s_{\Sigma_D}(\Omega), u \neq 0} \frac{\|u\|_{H^s_{\Sigma_D}(\Omega)}}{\|u\|_{L^{2^*_s}(\Omega)}}.$$

Hence, in terms of the extension function,

$$\left(\int_{\Omega} \varphi^{\frac{2N}{N-2s}}(x, 0) \, dx\right)^{\frac{N-2s}{2N}} \leq C\|\varphi(\cdot, 0)\|_{H^s_{\Sigma_D}(\Omega)} = C\|E_s[\varphi(\cdot, 0)]\|_{X^s_{\Sigma_D}(\mathcal{C}_\Omega)}.$$
Sobolev and Trace inequalities (Mixed D-N)

Since we have a Dirichlet condition on Σ_D with $0 < \mathcal{H}^{N-1}(\Sigma_D) < \mathcal{H}^{N-1}(\partial\Omega)$, then

$$0 < C := \inf_{u \in H^s_{\Sigma_D}(\Omega), u \not\equiv 0} \frac{\|u\|_{H^s_{\Sigma_D}(\Omega)}}{\|u\|_{L^{2^*}(\Omega)}}.$$

Hence, in terms of the extension function,

$$\left(\int_{\Omega} \varphi \frac{2N}{N-2s} (x, 0) dx \right)^{\frac{N-2s}{2N}} \leq C\|\varphi(\cdot, 0)\|_{H^s_{\Sigma_D}(\Omega)} = C\|E_{\Sigma_D}[\varphi(\cdot, 0)]\|_{X^s_{\Sigma_D}(C_{\Omega})}.$$

As a consequence, we obtain the following **Mixed Trace inequality**,

$$\left(\int_{\Omega} \varphi \frac{2N}{N-2s} (x, 0) dx \right)^{1-\frac{2s}{N}} \leq C \int_{C_{\Omega}} y^{1-2s} |\nabla \varphi|^2 dxdy.$$

for any $\varphi \in X^s_{\Sigma_D}(C_{\Omega})$, where C is a positive constant.
Sobolev constant relative to Σ_D

We define the Sobolev constant "relative to Σ_D" as follows,

$$S(\Sigma_D) = \inf_{\substack{u \in H^s_{\Sigma_D}(\Omega) \setminus \{0\}}} \frac{\|u\|^2_{H^s_{\Sigma_D}(\Omega)}}{\|u\|^2_{L^{2s}(\Omega)}} = \inf_{\substack{w \in X^s_{\Sigma_D}(C\Omega) \setminus \{0\}}} \frac{\|w\|^2_{X^s_{\Sigma_D}(C\Omega)}}{\|w(\cdot,0)\|^2_{L^{2s}(\Omega)}}.$$
Sobolev constant relative to Σ_D

We define the Sobolev constant "relative to Σ_D" as follows,

$$S(\Sigma_D) = \inf_{u \in H^s_{\Sigma_D}(\Omega), u \not\equiv 0} \frac{\|u\|^2_{H^s_{\Sigma_D}(\Omega)}}{\|u\|^2_{L^{2s}(\Omega)}} = \inf_{w \in X^s_{\Sigma_D}(C_\Omega), w \not\equiv 0} \frac{\|w\|^2_{X^s_{\Sigma_D}(C_\Omega)}}{\|w(\cdot, 0)\|^2_{L^{2s}(\Omega)}}.$$

Theorem 1. $S(\Sigma_D) \leq 2^{-\frac{2s}{N}} \kappa_s S(s, N)$, and even more, if $S(\Sigma_D) < 2^{-\frac{2s}{N}} \kappa_s S(s, N)$

$\Rightarrow S(\Sigma_D)$ is attained.
Sobolev constant relative to Σ_D

We define the Sobolev constant "relative to Σ_D" as follows,

$$S(\Sigma_D) = \inf_{u \in H^s_{\Sigma_D}(\Omega), \, u \neq 0} \frac{\|u\|^2_{H^s_{\Sigma_D}(\Omega)}}{\|u\|^2_{L^2(\Omega)}} = \inf_{w \in X^s_{\Sigma_D}(C_\Omega), \, w \neq 0} \frac{\|w\|^2_{X^s_{\Sigma_D}(C_\Omega)}}{\|w(\cdot, 0)\|^2_{L^2(\Omega)}}.$$

Theorem 1. $S(\Sigma_D) \leq 2^{-\frac{2s}{N}} \kappa_s S(s, N)$, and even more, if $S(\Sigma_D) < 2^{-\frac{2s}{N}} \kappa_s S(s, N)$ \implies $S(\Sigma_D)$ is attained.

The key of the proof relies on concentration-compactness arguments by Lions [L]. See [ACP] for similar arguments adapted to mixed problems with $s = 1$.

Sobolev constant relative to Σ_D

Following [CP, Lemma 4.1] we have the next result.

Lemma 1. Under certain geometrical assumptions on the distribution of Σ_D, Σ_N on $\partial \Omega$, $\lambda_1^s(\alpha) \to 0$, as $\alpha = \mathcal{H}^{N-1}(\Sigma_D) \to 0$.

Sobolev constant relative to Σ_D

Following [CP, Lemma 4.1] we have the next result.

Lemma 1. Under certain geometrical assumptions on the distribution of Σ_D, Σ_N on $\partial \Omega$, $\lambda_1^s(\alpha) \to 0$, as $\alpha = H^{N-1}(\Sigma_D) \to 0$.

Lemma 2. $S(\Sigma_D) \leq C\lambda_1^s(\alpha)$.
Sobolev constant relative to Σ_D

Following [CP, Lemma 4.1] we have the next result.

Lemma 1. Under certain geometrical assumptions on the distribution of Σ_D, Σ_N on $\partial \Omega$, $\lambda_1^s(\alpha) \to 0$, as $\alpha = \mathcal{H}^{N-1}(\Sigma_D) \to 0$.

Lemma 2. $S(\Sigma_D) \leq C\lambda_1^s(\alpha)$.

Theorem 2. Under some geometrical assumptions, the Sobolev constant $S(\Sigma_D)$ is attained.
Sobolev constant relative to Σ_D

Following [CP, Lemma 4.1] we have the next result.

Lemma 1. Under certain geometrical assumptions on the distribution of Σ_D, Σ_N on $\partial \Omega$, $\lambda_1^s(\alpha) \to 0$, as $\alpha = \mathcal{H}^{N-1}(\Sigma_D) \to 0$.

Lemma 2. $S(\Sigma_D) \leq C \lambda_1^s(\alpha)$.

Theorem 2. Under some geometrical assumptions, the Sobolev constant $S(\Sigma_D)$ is attained.

The proof follows by using Theorem 1 and Lemmas 1-2 jointly because $S(\Sigma_D)$ is as small as we want provided $\alpha \to 0$, proving that $S(\Sigma_D) < 2^{-\frac{2s}{N}} \kappa_s S(s, N)$.
Main Results

Remember the main problem

\[
(P_{\lambda}) \begin{cases}
(\Delta)^s u = \lambda u + u^{\frac{N+2s}{N-2s}}, & u > 0 \quad \text{in } \Omega, \\
B(u) = 0, & \text{on } \partial\Omega,
\end{cases}
\]

where \(\lambda > 0 \), and \(\Omega \subset \mathbb{R}^N \), with \(N > 2s, \frac{1}{2} < s < 1 \).
Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.
Main Results

Theorem 3. Assume that \(\frac{1}{2} < s < 1 \) and \(N \geq 4s \). Then problem \((P_\lambda)\):

1. has no solution for \(\lambda \geq \lambda_1^s \),
2. has solution for each \(0 < \lambda < \lambda_1^s \),
3. under the some geometrical assumptions, has solution for \(\lambda = 0 \) and \(\mathcal{H}^{N-1}(\Sigma_D) \) sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.
Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant $S(\Sigma_D)$.
Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant $S(\Sigma_D)$.

See [BN] for points 1, 2, with $s = 1$ and Dirichlet boundary data,

Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant $S'(\Sigma_D)$.

See [BN] for points 1, 2, with $s = 1$ and Dirichlet boundary data, [LPT] for point 3, with $s = 1$ and mixed D-N boundary data, but different hypotheses,

Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant $S(\Sigma_D)$.

See [BN] for points 1, 2, with $s = 1$ and Dirichlet boundary data, [LPT] for point 3, with $s = 1$ and mixed D-N boundary data, but different hypotheses, [G] for the points 1, 2, with $s = 1$ and D-N boundary data,

Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant $S(\Sigma_D)$.

See [BN] for points 1, 2, with $s = 1$ and Dirichlet boundary data,
[LPT] for point 3, with $s = 1$ and mixed D-N boundary data, but different hypotheses,
[G] for the points 1, 2, with $s = 1$ and D-N boundary data,
[ACP] for point 3 in the case $s = 1$ with mixed D-N boundary data,

Main Results

Theorem 3. Assume that $\frac{1}{2} < s < 1$ and $N \geq 4s$. Then problem (P_λ):

1. has no solution for $\lambda \geq \lambda_1^s$,
2. has solution for each $0 < \lambda < \lambda_1^s$,
3. under the some geometrical assumptions, has solution for $\lambda = 0$ and $\mathcal{H}^{N-1}(\Sigma_D)$ sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant $S(\Sigma_D)$.

See [BN] for points 1, 2, with $s = 1$ and Dirichlet boundary data,
[LPT] for point 3, with $s = 1$ and mixed D-N boundary data, but different hypotheses,
[G] for the points 1, 2, with $s = 1$ and D-N boundary data,
[ACP] for point 3 in the case $s = 1$ with mixed D-N boundary data,
[CT] for points 1, 2, with $s = \frac{1}{2}$ and Dirichlet boundary data,

Main Results

Theorem 3. Assume that \(\frac{1}{2} < s < 1 \) and \(N \geq 4s \). Then problem \((P_{\lambda})\):

1. has no solution for \(\lambda \geq \lambda_1^s \),
2. has solution for each \(0 < \lambda < \lambda_1^s \),
3. under the some geometrical assumptions, has solution for \(\lambda = 0 \) and \(\mathcal{H}^{N-1}(\Sigma_D) \) sufficiently small.

1 can be easily proved by using the first eigenfunction as a test function.

3 has been already proved before because of the attainability of the Sobolev constant \(S'(\Sigma_D) \).

See [BN] for points 1, 2, with \(s = 1 \) and Dirichlet boundary data,
[LPT] for point 3, with \(s = 1 \) and mixed D-N boundary data, but different hypotheses,
[G] for the points 1, 2, with \(s = 1 \) and D-N boundary data,
[ACP] for point 3 in the case \(s = 1 \) with mixed D-N boundary data,
[CT] for points 1, 2, with \(s = \frac{1}{2} \) and Dirichlet boundary data,
[BCdPS] for points 1, 2 in case \(\frac{1}{2} < s < 1 \) and Dirichlet boundary data.

Variational approach: minimizers

To prove point 2 in Theorem 3, i.e., the existence of solution to (P_λ), for $0 < \lambda < \lambda_1^s$, we consider the following quotient

$$Q_\lambda(w) = \frac{\|w\|_{X^{s}_{\Sigma D}(C_{\Omega})}^2 - \lambda\|u\|_{L^2(\Omega)}^2}{\|u\|_{L^{2^*_s}(\Omega)}^2},$$

where $w = E_s[u]$, and we define

$$S_\lambda(\Omega) = \inf_{\substack{w \in X^{s}_{\Sigma D}(C_{\Omega}) \backslash \{0\}}} \{Q_\lambda(w)\},$$

in order to find a minimizer.
Fractional elliptic problems, inverse fractional operator

\[
(P_{\alpha,\beta}) \begin{cases}
(-\Delta)^{\alpha-\beta} u = \lambda (-\Delta)^{-\beta} u + |u|^{2^*_{\mu} - 2} u & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

We prove existence or nonexistence of positive solutions depending on the parameter \(\lambda > 0 \), up to the critical value of the exponent \(p \), i.e., for \(1 < p \leq 2^*_{\mu} - 1 \) where \(\mu := \alpha - \beta \) and \(2^*_{\mu} = \frac{2N}{N - 2\mu} \) is the critical exponent of the Sobolev embedding.
Fractional elliptic problems, inverse fractional operator

\[\begin{cases}
(-\Delta)^{\alpha-\beta} u = \lambda (-\Delta)^{-\beta} u + |u|^{2^* - 2} u & \text{in } \Omega, \\
\phantom{(-\Delta)^{\alpha-\beta}} u = 0 & \text{on } \partial \Omega,
\end{cases} \]

We prove existence or nonexistence of positive solutions depending on the parameter \(\lambda > 0 \), up to the critical value of the exponent \(p \), i.e., for \(1 < p \leq 2^* - 1 \) where \(\mu := \alpha - \beta \) and \(2^* = \frac{2N}{N-2\mu} \) is the critical exponent of the Sobolev embedding.

Theorem. For every \(\gamma \in (0, \lambda_1^{\alpha}) \), there exists a positive solution for the problem \((P_{\alpha,\beta})\) provided that \(N > 4\alpha - 2\beta \).
Thank you for the attention!