The epsilon constant conjecture for higher dimensional unramified twists of $\mathbb{Z}_p^r(1)$

Alessandro Cobbe (joint work with Werner Bley)

der Bundeswehr

Universität München

June, 22th, 2021
Let E be a number field. For $\text{Re}(s) > 1$

$$\zeta_E(s) = \sum_{I \neq 0 \text{ ideals in } \mathcal{O}_E} \frac{1}{N_{E/Q}(I)^s}.$$

This is extended analytically and has a pole at $s = 1$.
Dedekind zeta function

Dedekind ζ-function

Let E be a number field. For $\text{Re}(s) > 1$

$$\zeta_E(s) = \sum_{I \neq 0 \text{ ideals in } \mathcal{O}_E} \frac{1}{N_{E/Q}(I)^s}.$$

This is extended analytically and has a pole at $s = 1$.

Functional equation

Up to modifying $\zeta_E(s)$ by some Γ-factors, we get $\Lambda_E(s)$, which satisfies $\Lambda_E(s) = \Lambda_E(1 - s)$.
Motivation

The epsilon constant conjecture

Analytic class number formula

\[
\lim_{s \to 1} (s - 1) \zeta_E(s) = \frac{2^{r_1} (2\pi)^{r_2} h_E \text{Reg}_E}{w_E |d_E|^{1/2}}
\]

Here:

- \(h_E \) is the class number of \(E \);
- \(w_E \) is the number of roots of unity in \(E \);
- \(d_E \) is the discriminant of \(E/\mathbb{Q} \);
- \(r_1, r_2 \) respectively the real and the pairs of complex embeddings of \(E \);
- \(\text{Reg}_E \) is the regulator.
Another formula

From the analytic class number formula and the functional equation one can show:

$$\lim_{s \to 0} \frac{\zeta_E(s)}{s^{r_1+r_2-1}} = -\frac{h_E \operatorname{Reg}_E}{w_E}.$$
Artin L-functions

Let F/E be a Galois-extension of number fields with Galois group Γ, let $\chi \in \text{Irr}(\Gamma)$ be an irreducible complex character of Γ, then one can define the Artin L-function $L(s, F/E, \chi)$.

Relation to $\zeta_N(s)$

$\zeta_F(s) = \prod_{\chi} L(s, F/E, \chi) \chi(1)$.

Equivariant Artin L-function

If Γ is abelian we have an equivariant version:

$\theta_{F/E}(s) = \sum_{\chi \in \hat{\Gamma}} L(s, F/E, \chi^{-1}) e^{\chi}$.

A. Cobbe
Artin L-functions

Let F/E be a Galois-extension of number fields with Galois group Γ, let $\chi \in \text{Irr}(\Gamma)$ be an irreducible complex character of Γ, then one can define the Artin L-function $L(s, F/E, \chi)$.

Relation to $\zeta_N(s)$

$$\zeta_F(s) = \prod_{\chi} L(s, F/E, \chi)^{\chi(1)}.$$
Artin L-functions

Let F/E be a Galois-extension of number fields with Galois group Γ, let $\chi \in \text{Irr}(\Gamma)$ be an irreducible complex character of Γ, then one can define the Artin L-function $L(s, F/E, \chi)$.

Relation to $\zeta_N(s)$

$$\zeta_F(s) = \prod_{\chi} L(s, F/E, \chi)^{\chi(1)}.$$

Equivariant Artin L-function

If Γ is abelian we have an equivariant version:

$$\theta_{F/E}(s) = \sum_{\chi \in \hat{\Gamma}} L(s, F/E, \chi^{-1})e_{\chi}. $$
Epsilon constants conjecture

Functional equation

Again one can modify $L(s, F/E, \chi)$ by some Γ-factors and obtain $\Lambda(s, F/E, \chi)$, which satisfies

$$\Lambda(s, F/E, \chi) = \varepsilon(s, F/E, \chi)\Lambda(1 - s, F/E, \bar{\chi}).$$
Epsilon constants conjecture

Functional equation

Again one can modify $L(s, F/E, \chi)$ by some Γ-factors and obtain $\Lambda(s, F/E, \chi)$, which satisfies

$$\Lambda(s, F/E, \chi) = \varepsilon(s, F/E, \chi)\Lambda(1 - s, F/E, \bar{\chi}).$$

Remark

The main building blocks of $\varepsilon(s, F/E, \chi)$ are the discriminant of F/E and a Gauß sum.
Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).
Epsilon constants conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.
Epsilon constants conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:

- ETNC(0)
- ETNC(1).

Both are not known in general.

The epsilon constant conjecture

A special case of the ε constants conjecture can be interpreted as a compatibility of ETNC(0) and ETNC(1) with the functional equation.
Motivation

The epsilon constant conjecture

Equivariant Tamagawa number conjecture

There are generalizations of the class number formula and of the other formula:
- ETNC(0)
- ETNC(1).

Both are not known in general.

The epsilon constant conjecture

A special case of the ε constants conjecture can be interpreted as a compatibility of ETNC(0) and ETNC(1) with the functional equation.

Seminal work on the epsilon constant conjecture was done by Bloch-Kato and by Benois-Berger.
The epsilon constant conjecture

The setting

Let N/K be a Galois extension of p-adic fields with Galois group G and let V be a p-adic representation of G.
The epsilon constant conjecture

The setting

Let N/K be a Galois extension of p-adic fields with Galois group G and let V be a p-adic representation of G. Let

$$\rho^{nr} : G_K \longrightarrow \text{Gl}_r(\mathbb{Z}_p)$$

be an unramified representation of $G_K = \text{Gal}(K^c/K)$. We will focus on the case $V = \mathbb{Q}_p^r(1)(\rho^{nr})$, where the (1) stands for the twist with the cyclotomic character.
Let N/K be a Galois extension of p-adic fields with Galois group G and let V be a p-adic representation of G. Let

$$\rho^\text{nr} : G_K \rightarrow \text{Gl}_r(\mathbb{Z}_p)$$

be an unramified representation of $G_K = \text{Gal}(K^c/K)$. We will focus on the case $V = \mathbb{Q}_p^r(1)(\rho^\text{nr})$, where the (1) stands for the twist with the cyclotomic character.

Our formulation of the conjecture will be an equality in $K_0(\mathbb{Z}_p[G], \mathbb{Q}_p[G])$. For G abelian, this is isomorphic to $\mathbb{Q}_p[G]^\times / \mathbb{Z}_p[G]^\times$.
The main ingredients

The epsilon constants

ε_D(N/K, V) ∈ Z(Q_p[G]) (the center of Q_p[G]) is basically a Gauss sum (up to an extra factor).
The main ingredients

The epsilon constants

$\varepsilon_D(N/K, V) \in Z(\mathbb{Q}_p[G])$ (the center of $\mathbb{Q}_p[G]$) is basically a Gauß sum (up to an extra factor).

In the case of weak and wild ramification we use work of Pickett-Vinatier, which relates Gauß sums to some norm resolvents.
The epsilon constants

\[\varepsilon_D(N/K, V) \in Z(\mathbb{Q}_p[G]) \] (the center of \(\mathbb{Q}_p[G] \)) is basically a Gauß sum (up to an extra factor).

In the case of weak and wild ramification we use work of Pickett-Vinatier, which relates Gauß sums to some norm resolvents.

A sublattice

Let \(T \subseteq V \) be a \(G_K \)-stable \(\mathbb{Z}_p \)-sublattice such that \(V = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T \).

In our case \(T = \mathbb{Z}_p^r(1)(\rho^{nr}) \).
A perfect complex

Theorem (C.)

Let $R\Gamma(N, T)$ be the complex of the G_N-invariants of the standard resolution of T. One can construct explicitly a bounded complex of cohomologically trivial G-modules which represents $R\Gamma(N, T)$. Its cohomology is:

1. $H^1(N, T) = (\prod_r \hat{N_0}^{\times}(\rho_{nr}))^{G_N}$, where N_0 is the completion of the maximal unramified extension and the hat stands for the p-completion.
2. $H^2(N, T) = \mathbb{Z}_p(\rho_{nr})/(F_N - 1)\mathbb{Z}_p(\rho_{nr})$,
3. $H^i(N, T) = 0$ for $i \neq 1, 2$.
The epsilon constant conjecture

The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective \(\mathbb{Z}_p[G] \)-modules.) with a trivialisation, one can associate an Euler characteristic:

\[
C_{N/K} = -\chi_{\mathbb{Z}_p[G], B_{dR}[G]}(R\Gamma(N, T) \oplus \text{Ind}_{N/\mathbb{Q}_p} T[0], \exp_V \circ \text{comp}_V^{-1}).
\]
The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_p[G]$-modules.) with a trivialisation, one can associate an Euler characteristic:

$$C_{N/K} = -\chi_{\mathbb{Z}_p[G], B_{dR}[G]}(R\Gamma(N, T) \oplus \text{Ind}_{N/\mathbb{Q}_p} T[0], \exp_V \circ \text{comp}_V^{-1}).$$

The epsilon constant conjecture

Some other terms are necessary:

$$R_{N/K} = C_{N/K} + U_{\text{cris}} + rm\hat{\delta}^1_{\mathbb{Z}_p[G], B_{dR}[G]}(t) - mU_{tw}(\rho_{\mathbb{Q}_p}^{nr}) - rU_{N/K} + \hat{\delta}^1_{\mathbb{Z}_p[G], B_{dR}[G]}(\varepsilon_D(N/K, V)).$$
The cohomological term

To a perfect complex (i.e. quasi-isomorphic to a bounded complex of f.g. projective $\mathbb{Z}_p[G]$-modules.) with a trivialisation, one can associate an Euler characteristic:

$$C_{N/K} = -\chi_{\mathbb{Z}_p[G], B_{dR}[G]}(R\Gamma(N, T) \oplus \text{Ind}_{N/\mathbb{Q}_p} T[0], \exp_V \circ \text{comp}_V^{-1}).$$

The epsilon constant conjecture

Some other terms are necessary:

$$R_{N/K} = C_{N/K} + U_{\text{cris}} + \text{rm} \hat{\partial}^1_{\mathbb{Z}_p[G], B_{dR}[G]}(t) - mU_{tw}(\rho_{\mathbb{Q}_p}^{nr}) - rU_{N/K} + \hat{\partial}^1_{\mathbb{Z}_p[G], B_{dR}[G]}(\varepsilon_D(N/K, V)).$$

The conjecture $C_{EP}^{na}(N/K, V)$ states that $R_{N/K} = 0$.
Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N/\mathbb{Q}_p abelian, $p \neq 2$.

Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N/\mathbb{Q}_p abelian, $p \neq 2$.
- Breuning, Bley-Debeerst: $[N : \mathbb{Q}_p]$ small.
Results for $V = \mathbb{Q}_p(1)$

- Breuning: N/K tame.
- Bley-Burns, Breuning: N/\mathbb{Q}_p abelian, $p \neq 2$.
- Breuning, Bley-Debeerst: $[N : \mathbb{Q}_p]$ small.
- Bley-C: N/K weakly ramified and abelian, with cyclic ramification group, inertia degree coprime to $[K : \mathbb{Q}_p]$ and K/\mathbb{Q}_p unramified.
Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{nr})(1)$, where χ^{nr} is an unramified character of G_K, which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.
Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{\text{nr}})(1)$, where χ^{nr} is an unramified character of G_K, which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

- Izychev-Venjakob: N/K tame.
Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{\text{nr}})(1)$, where χ^{nr} is an unramified character of G_K, which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

- Izychev-Venjakob: N/K tame.
- Bley-C: N/K weakly ramified, as for $\mathbb{Q}_p(1)$.
Results for unramified twists of $\mathbb{Q}_p(1)$

Let $V = \mathbb{Q}_p(\chi^{nr})(1)$, where χ^{nr} is an unramified character of G_K, which is the restriction of an unramified character of $G_{\mathbb{Q}_p}$.

- Izychev-Venjakob: N/K tame.
- Bley-C: N/K weakly ramified, as for $\mathbb{Q}_p(1)$.

Remark

An Iwasawa theoretic version of the conjecture by A. Nickel, together with some work in progress of Burns-Nickel will give a new proof of the above results.
Higher dimensional results

Theorem (Bley-C.)

Let \(N/K \) be a tame extension of \(p \)-adic number fields and let

\[
\rho_{Q_p}^{nr} : G_{Q_p} \longrightarrow \text{Gl}_r(\mathbb{Z}_p)
\]

be an unramified representation of \(G_{Q_p} \). Let \(\rho^{nr} \) denote the restriction of \(\rho_{Q_p}^{nr} \) to \(G_K \). Then \(C_{EP}^{na}(N/K, V) \) is true for \(N/K \) and \(V = Q_p^r(1)(\rho^{nr}) \), if \(\det(\rho^{nr}(F_N) - 1) \neq 0 \).
Theepsilon-constant conjecture

Higher dimensional results

Theorem (Bley-C.)

Let N/K be a tame extension of p-adic number fields and let

$$\rho_{Q_p}^{nr}: G_{Q_p} \rightarrow \text{Gl}_r(\mathbb{Z}_p)$$

be an unramified representation of G_{Q_p}. Let ρ^{nr} denote the restriction of $\rho_{Q_p}^{nr}$ to G_K. Then $C^n_{EP}(N/K, V)$ is true for N/K and $V = \mathbb{Q}_p^r(1)(\rho^{nr})$, if $\det(\rho^{nr}(F_N) - 1) \neq 0$.

Remark

Recall: $H^2(N, T) = \mathbb{Z}_p^r(\rho^{nr})/(F_N - 1)\mathbb{Z}_p^r(\rho^{nr})$. The condition $\det(\rho^{nr}(F_N) - 1) \neq 0$ holds, if and only if $H^2(N, \mathbb{Z}_p^r(1)(\rho^{nr}))$ is finite.
Theorem (Bley-C.)

Let K/\mathbb{Q}_p be unramified of degree m and let N/K be weakly and wildly ramified, finite and abelian with cyclic ramification group. Let d be the inertia degree of N/K, let \tilde{d} denote the order of $\rho^{nr}(F_N) \mod p$ in $\text{Gl}_r(\mathbb{Z}_p/p\mathbb{Z}_p)$ and assume that m and d are relatively prime. Let $\rho^{nr}_{\mathbb{Q}_p} : G_{\mathbb{Q}_p} \to \text{Gl}_r(\mathbb{Z}_p)$ be an unramified representation of $G_{\mathbb{Q}_p}$ and let ρ^{nr} denote the restriction of $\rho^{nr}_{\mathbb{Q}_p}$ to G_K. Assume that $\det(\rho^{nr}(F_N) - 1) \neq 0$ and, in addition, that one of the following three conditions holds:

(a) $\rho^{nr}(F_N) - 1$ is invertible modulo p;

(b) $\rho^{nr}(F_N) \equiv 1 \pmod{p}$;

(c) $\gcd(\tilde{d}, m) = 1$ and $\det(\rho^{nr}(F_N)^{\tilde{d}} - 1) \neq 0$.

Then $C^{na}_{EP}(N/K, V)$ is true for N/K and $V = \mathbb{Q}_p^r(1)(\rho^{nr})$.
Final remark

If A/\mathbb{Q}_p is an abelian variety of dimension r with good ordinary reduction, then the Tate module of the associated formal group \hat{A} is isomorphic to $\mathbb{Z}_p^r(1)(\rho_{\mathbb{Q}_p}^{nr})$ for an appropriate choice of $\rho_{\mathbb{Q}_p}^{nr}$. By a result of Mazur, $\det(\rho^{nr}(F_L) - 1) \neq 0$ is automatically satisfied for any finite extension L/\mathbb{Q}_p.
Thank you for your attention!