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�(x� y)f(y)v(x) dy dx.
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An interface problem

• ⌦: bounded Lipschitz domain in Rd
(d = 2 or 3);

• � ⇢ ⌦: a closed Lipschitz interface with co-dimension one;

• � is away from @⌦, i.e.
dist(�, @⌦) > c0;

• f 2 L
2(�).

Model problem

��u = 0, in ⌦\�,
JuK = 0, on �,

s
@u

@⌫

{
= f, on �,

u = 0, on @⌦.

⌦

!

�

⌫
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Weak formulation

Find u 2 V := H
1
0 (⌦) satisfying

A(u, v) =

Z

�

fv d� := hF, viV 0,V , for all v 2 V.

Here

• A is the Dirichlet form,

A(v, w) =

Z

⌦

rv
|
rw dx, for all v, w 2 V.

• The forcing data

F = Mf :=

Z

�

�(x� y)f(y) d�y,

with � denoting the d-dimensional Dirac delta distribution.
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Dirac delta approximation

Given k 2 N, let  (x) in L
1(Rd) such that

1. Compact supported:

supp( ) ⇢ Br0(0)

2. k-th order moments condition:

Z

Rd
y
↵

i  (x� y) dy = x
↵

i i = 1 . . . d, 0  ↵  k, for all x 2 Rd;

Define the Dirac delta approximation

�
" :=

1
"d
 

⇣
x

"

⌘
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Dirac delta approximation

L
1 growth control

k|x|m�"(x)k
L1(Rd) � "

m
, 0  m 2 R.

Examples of  in 1d:

• C
1
:  (x) = (1 + cos(⇡x))�(�1,1)(x)/2;

• C
1
:  (x) = e

1�1/(1�x
2)
�(�1,1)(x);

• L
1
:  (x) = 1

2�(�1,1)(x);

• Polynomial class  k,s
: [Tornberg, 2002].

Generating  from R to Rd:

• Radially symmetric:  ⇢ is supported in [0, 1] and set  (x) := Id ⇢(|x|).
• Tensor product:  (x) :=

Q
d

i=1  1d(xi), for x = (x1, · · · , xd) 2 Rd
.
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Data regularization/mollification

Regularization of L1(⌦) functions

v
"(x) :=

Z

⌦

�
"(x� y)v(y) dy, for all x 2 ⌦,

Regularization of functionals in negative Sobolev spaces

hF "
, viH�s(⌦),Hs(⌦) := hF, v"iH�s(⌦),Hs(⌦).

Regularized data for the interface problem

For F = Mf :=
R
�
�(x� y)f(y) d�y, then

F
"(x) =

Z

�

f(y)�"(y � x) dy.

If  (�x) =  (x), F "(x) =
R
�
f(y)�"(x� y) dy.
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Regularized formulation and its FE approximation

Regularized problem

Find u" 2 V satisfying

A(u", v) = hF "
, viV 0,V , for all v 2 V.

Finite element approximation

Finite element space Vh:

• subordinate to a quasi-uniform mesh with the mesh size h;

• Vh ⇢ V;
• set of continuous piecewise linear functions.

Find u"h 2 Vh satisfying

A(u"h, vh) = hF "
, vhiV 0,V , for all vh 2 Vh.
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Strang’s Lemma

ku� u"hkH1(⌦) � inf
vh2Vh

ku� vhkH1(⌦) + sup
wh2Vh

hF � F
"
, whiH�1(⌦),H1

0 (⌦)

kwhkH1
0 (⌦)

Regularity

For f 2 L
2(�), F 2 H

s�1(⌦) with 0  s < 1/2.
����
Z

�

f(y)v(y) d�y

����  kfkL2(�)kvkL2(�)

� kfkL2(�)kvkH1�s(!)  kfkL2(�)kvkH1�s(⌦).

So u 2 H
1+s(⌦) \H

1
0 (⌦) by elliptic regularity.

Estimate of the space approximation using Scott-Zhang interpolant

inf
vh2Vh

ku� vhkH1(⌦)  ku� IhukH1(⌦) � h
skukH1+s(⌦).
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Data consistancy

For v 2 H
1(⌦),

hF � F
"
, vi = hF, v � v

"i � kfkL2(�)kv � v
"kH1�s(!).

Proposition [L. Heltai & WL, 2020]

If �
"
has k-th order moment condition, for v 2 H

k+1(⌦),

kv � v
"kH1�s(!) � "

k+skvk
Hk+1(!"0 ).

Here " < "0 and

!
" := [x2!B"(x).

Idea of the proof: Using Taylor expansion (with the moment condition),

Young’s inequality for convolution and the L
1
growth control.
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Error estimates

ku� u"hkH1(⌦) � inf
vh2Vh

ku� vhkH1(⌦) + sup
wh2Vh

hF � F
"
, whiH�1(⌦),H1

0 (⌦)

kwhkH1
0 (⌦)

Theorem [L. Heltai & WL, 2020]

If �
"
has the 0th order moment condition (i.e.

R
R �

" = 1),

ku� u"kH1(⌦) � "
skfkL2(�)

and

ku� u"hkH1(⌦) � (hs + "
s)kfkL2(�),

where s 2 [0, 1
2 ).
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L
2
error estimate for regularization

Theorem [L. Heltai & WL, 2020]

If �
"
has the first order moment condition,

ku� u"kL2(⌦) � "
s+1kfkL2(�).

Regularization estimates. If �" has the first order moment condition,

kv � v
"kH1�s(!) � "

1+skvkH2(!"0 )

H
2
loc regularity. Given g 2 L

2(⌦), let T : V 0 ! V be the solution operator

satisfying

A(Tg, v) = (g, v)L2 , for all v 2 V.

Then,

kTgkH2(!"0 ) � kgkL2(⌦).
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Proof: a duality argument

The dual problem: find z 2 V such that

A(v, z) = (u� u", v)⌦, for all v 2 V.

Hence, we choose v = u� u" and obtain that

ku� u"k2
L2(⌦) = A(z, u� u")

= hF � F
"
, zi = hF, z � z

"i.
(1)

Due to the interior regularity of z, u� u" 2 H
1
0 (⌦) ⇢ L

2(⌦) implies that

kzkH2(!"0 ) � ku� u"kL2(⌦).

We continue to estimate the right hand side of (1) by

hF, z � z
"i � kfkL2(�)kz � z

"kH1�s(!)

� "
s+1kfkL2(�)kzkH2(!"0 )

� "
s+1kfkL2(�)ku� u"kL2(⌦),
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L
2
error estimate for the finite element approximation

Elliptic regularity for polygonal domain

A(Tg, v) = hg, viV 0,V , for all v 2 V.

There exists r 2 (1/2, 1] and a positive constant Cr satisfying

kTgkH1+r(⌦)  CrkgkH�1+r(⌦).

Theorem [L. Heltai & WL, 2020]

ku� u"hkL2(⌦) � (hr+s + h
r
"
s + "

1+s)kfkL2(�).

If h ⇠ ✏ and r = 1,

ku� u"hkL2(⌦) � h
3/2�kfkL2(�).

Proof: Bound ku� u"kL2 (previous theorem) and ku" � u"hkL2 (duality

argument) separately.
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Test problem: square domain

• � = @BR(c) with c = (0.3, 0.3)
|
and R = 0.2;

• f = 1
R

and non-homogeneous boundary condition g = ln(|x� c|);
• The analytic solution:

u(x) =

(
� ln(|x� c|), if |x� c| > R,

� ln(R), if |x� c|  R.

• Setting " = h yields

ku� u"hkH1(⌦) � h
1/2 ⇠ #DoFs

�0.25
,

and

ku� u"hkL2(⌦) � h
3/2 ⇠ #DoFs

�0.75
.
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Test: coarse mesh and solution (744705 DoFs)
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Test: L
2
and H

1
convergence tables

103 104 105 106

10�4

10�3

10�2

#DoFs

L
2
E
rr
or

Radially symmetric C
1

Tensor product C1

Tensor product C1

Tensor product L1

slope �0.75

103 104 105 106

10�1

10�0.8

10�0.6

10�0.4

10�0.2

#DoFs

H
1
E
rr
or

Radially symmetric C
1

Tensor product C1

Tensor product C1

Tensor product L1

slope �0.25
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Test 2: unit cube

• � = @BR(c) with c = (0.3, 0.3, 0.3)
|
and R = 0.2;

• f = 1
R2 and nonhomogeneous boundary condition g = 1/|x� c|;

• The analytic solution:

u(x) =

(
1/|x� c|, if |x� c| > R,

1/R, if |x� c|  R.

• Setting " = h yields

ku� u"hkH1(⌦) � h
1/2 ⇠ #DoFs

�1/6
,

and

ku� u"hkL2(⌦) � h
3/2 ⇠ #DoFs

�1/2
.
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Test 2: coarse mesh of the unit cube and solution (2324113 DoFs)
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Test 2: L
2
convergence table using regularization tensorproduct C

1
and

without using regularization

104 105 106

10�2.6

10�2.4

10�2.2

10�2

10�1.8

10�1.6

10�1.4

10�1.2

#DoFs

L
2
E
rr
or

using regularization
without regularization

slope -0.5

104 105 106
10�1

100

101

#DoFs

C
P
U

ti
m
e

using regularization
without regularization
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Conclusion and Outlook

We have shown that the convergence rate of FEM for the regularized problem

is the same as the direct approach if " ⇠ h.

Outlook

• Adaptive finite element methods and its quasi-optimality (in preparation).

• Error analysis if the interface attaching the boundary, or even the corner.

• Fictitious domain methods using regularization.

• Time dependent problems.
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