Alternating links, rational balls & tilings

Brendan Owens, Univ. of Glasgow

(on joint work with Josh Greene)
Questions

\[S^3 = \emptyset B^4 \]

\[\Sigma_2(S^3, \text{unknot}) \quad \Sigma_2(B^4, \text{unknotted disk}) \]

Generalize:

- Which rational homology 3-spheres \(Y \) bound rational homology 4-balls \(W \)?
- Which knots in \(S^3 \) are slice?
- Which links in \(S^3 \) bound surfaces \(F \hookrightarrow B^4, \chi(F) = 1 \)?

\[\{ W = \Sigma_2(B^4,F) \} \text{ is \(\mathcal{QHB} \)} \]

[Everything smooth]

Goal: classify alternating links with \(\Sigma_2(S^3,L) = \emptyset \) \(\mathcal{QHB} \)
2) Example

L alternating link

Λb “black lattice” has
Gram matrix \[
\begin{bmatrix}
5 & 2 \\
2 & 4
\end{bmatrix},
\text{ rank 2, det } 16 = 4^2
\]

L bounds \(F = \text{disk} \sqcup \text{M"ob. band} \)

\(\chi(F) = 1 \)

\(\Sigma_2(S^3,L) = \partial \Sigma_2(B^4,F) \neq \emptyset \)
Theorem (Greene-O.)

Let L be an alternating link s.t. Λ_b has rank n and determinant 2^n.

TFAE:
1. $\Sigma_2(S^3, L)$ bounds a QHB;
2. Λ_b is a 2-cube tiling lattice;
3. L is expanded from the crossingless unknot by a finite sequence of moves I and II;
4. L may be converted to the k-component unlink by a sequence of $(k-1)$ band moves and finitely many Conway mutations for some $k \in \mathbb{N}$.
2-cube tiling lattice:

A lattice \(\Lambda \subseteq \mathbb{Z}^n \) whose vertices are centres of cubes of side 2 which tile \(\mathbb{R}^n \).

Conway mutation:

\[
\text{tangle} \quad \rightarrow \quad \text{tangle}
\]

(suffices for our needs)
Moves I and II:

(Require u, v in different components of black graph $\setminus \text{3w3}$)
Lots of examples

Black graph of unknot

moves I

& II

Replace any edge
with
Proof sketch

1. $\Sigma_2(S^3, L)$ bounds a QHB;

 Donaldson's diagonalisation then + Heegaard Floer correction terms (à la Greene-Jabuka)

2. Λ_b is a 2-cube tiling lattice;

3. L is expanded from the crossingless unknot by a finite sequence of moves I and II;

4. L may be converted to the k-component unlink by a sequence of ($k-1$) band moves and finitely many Conway mutations for some $k \in \mathbb{N}$.
8 Proof sketch

(1) $\Sigma_2(S^3,L)$ bounds a QHB;

(2) Λ_b is a 2-cube tiling lattice; uses Minkowski conjecture (1896) proved by Hajós (1941): every tiling of \mathbb{R}^n by cubes has a pair of cubes which share a facet.

(3) L is expanded from the crossingless unknot \bigcirc by a finite sequence of moves I and II;

(4) L may be converted to the k-component unlink by a sequence of $(k-1)$ braid moves and finitely many Conway mutations for some $k \in \mathbb{N}$.

\[\]
Proof sketch

1. $\Sigma_2(S^3, L)$ bounds a QHB;
2. Λ_b is a 2-cube tiling lattice;
3. L is expanded from the crossingless unknot by a finite sequence of moves I and II;
4. L may be converted to the k-component unlink by a sequence of $(k-1)$ band moves and finitely many Conway mutations for some $k \in \mathbb{N}$.
Proof sketch

1. $\Sigma_2(S^3,L)$ bounds a QHB;
2. Λ_b is a 2-cube tiling lattice;
3. L is expanded from the crossingless unknot \emptyset by a finite sequence of moves I and II;
4. L may be converted to the k-component unlink by a sequence of $(k-1)$ band moves and finitely many Conway mutations for some $k \in \mathbb{N}$.

\Rightarrow : Take double branched cover
Thanks!