Positive periodic solutions for nonlinear delay dynamic equations on time scales

Kamel Ali Khellilii and Faycal Bouchelaghem

University of Badji Mokhtar, BP 12, 23000, Annaba, Algeria

Laboratory of analysis and control of differential equations, University of 8 May 1945, Guelma, Algeria

In this work, we use fixed point theorem to study the existence of positive periodic solutions for delay dynamic equations on time scales. Transforming the equation to an integral equation enables to show the existence of positive periodic solutions by appealing to Krasnoselskii’s fixed point theorem. The obtained integral equation is the sum of two mappings; one is a contraction and the other is compact.

1. INTRODUCTION

Let $T$ be a periodic time scale with $0 \in T$. The aim of this work is to extend the results obtained in [10] to the first-order neutral delay dynamic equation on a time scale. More precisely, we consider the equation

$$
\left( r(t) x(t) - P(t) \int_{t-r(t)}^{t} x(t - r(t), \xi) \Delta \xi \right) \Delta = -Q(t) x(t) + \int_{t-r(t)}^{t} f(t, x(t - r(t), \xi), x(t - r(t), \xi)) \Delta \xi,
$$

where $r \in C_{2}(T, R)$, $r(t) > 0$, $r \in C_{0}(T \times [0, \omega_{0}], R)$, $Q \in C_{2}(T, R)$, $f \in C_{0}(T \times R \times R, R)$, with $d > 0$, and $r$, $Q$, and $f$ are $\omega$-periodic functions, $t$ is $\omega$-periodic with respect to first variable, and $x$ is $\omega$-periodic with respect to $t$.

Let $\mathcal{M} = \{ x \in \Phi : m < x(t) < M, t \in [0, \omega_{0}] \}$. We observe that $\mathcal{M}$ is a bounded, closed, and convex subset of $\Phi$. Define two mappings $A, B : \mathcal{M} \to \Phi$ as follows

$$
(Ax)(t) = \frac{1}{r(t)} \int_{t-r(t)}^{t} G(t, \xi) [f(t, x(t - r(t), \xi), x(t - r(t), \xi)) - Q(s) \bar{P}(s) x(t - r(t), \xi) \Delta \xi],
$$

$$
(Bx)(t) = P(t) \int_{t-r(t)}^{t} f(t, x(t - r(t), \xi)) \Delta \xi.
$$

Theorem 3.3. Assume $- \frac{m}{m} < P(t)(d - c) \leq 0$ and there exist positive constants $m$ and $M$ such that $0 < m < M$ such that

$$
\frac{r(t)}{d - c} \leq \frac{\int_{[0, \omega_{0}]} f(t, \xi) \Delta \xi}{\int_{[0, \omega_{0}]} P(t) f(t, \xi) \Delta \xi} \leq \frac{M}{d - c} \forall (t, \xi) \in [0, \omega_{0}] \times [m, M].
$$

Then, (1.1) has a positive $\omega$-periodic solution $x \in [m, M]$.

Corollary 3.1. Assume $r(t) = 1$, $0 < P(t)(d - c) \leq \rho_{1} < 1$ and there exist positive constants $m$ and $M$ with $0 < m < M$ such that

$$
\frac{m}{d - c} \leq \frac{\int_{[0, \omega_{0}]} f(t, \xi) \Delta \xi}{\int_{[0, \omega_{0}]} P(t) f(t, \xi) \Delta \xi} \leq \frac{M}{d - c} \forall (t, \xi) \in [0, \omega_{0}] \times [m, M].
$$

Then, (1.1) has a positive $\omega$-periodic solution $x \in [m, M]$.

Theorem 2. Assume $0 < P(t)(d - c) \leq \rho_{1} < 1$ and there exist positive constants $m$ and $M$ such that $0 < m < M$ such that

$$
\int_{[0, \omega_{0}]} f(t, \xi) \Delta \xi \leq \frac{M}{d - c} \forall (t, \xi) \in [0, \omega_{0}] \times [m, M].
$$

Then, (1.1) has a positive $\omega$-periodic solution $x \in [m, M]$.

$$
(1.1) \Rightarrow \begin{cases}
\frac{r(t)}{d - c} \leq \frac{\int_{[0, \omega_{0}]} f(t, \xi) \Delta \xi}{\int_{[0, \omega_{0}]} P(t) f(t, \xi) \Delta \xi} \leq \frac{M}{d - c} \\
\frac{m}{d - c} \leq \frac{\int_{[0, \omega_{0}]} f(t, \xi) \Delta \xi}{\int_{[0, \omega_{0}]} P(t) f(t, \xi) \Delta \xi} \leq \frac{M}{d - c}
\end{cases} \forall (t, \xi) \in [0, \omega_{0}] \times [m, M].
$$

Corollary 3.2. Assume $r(t) = 1$, $-1 < \rho_{1} \leq P(t)(d - c) \leq 0$ and there exist positive constants $m$ and $M$ with $0 < m < M$ such that

$$
\int_{[0, \omega_{0}]} f(t, \xi) \Delta \xi \leq \frac{M}{d - c} \forall (t, \xi) \in [0, \omega_{0}] \times [m, M].
$$

Then, (1.1) has a positive $\omega$-periodic solution $x \in [m, M]$.

$$
\begin{align}
\alpha(t) &= \frac{Q(t)}{r(t) \Delta \xi} \\
\beta(t) &= \frac{P(t)}{r(t) \Delta \xi}
\end{align}
$$

Multiplying through (3.2) by $e_{\alpha}(t, 0)$ gives

$$
\begin{cases}
\left( \frac{r(t)}{d - c} \right) x(t) - Q(t) \int_{t-r(t)}^{t} x(t - r(t), \xi) \Delta \xi \\
\left( \frac{r(t)}{d - c} \right) x(t) - P(t) \int_{t-r(t)}^{t} x(t - r(t), \xi) \Delta \xi \leq e_{\alpha}(t, 0)
\end{cases}
$$

Integrating (3.3) from $t$ to $t + \omega$ gives

$$
x(t) = \frac{1}{r(t)} \int_{t}^{t+\omega} G(t, \xi) \left[ \int_{\xi}^{t} f(s, x(s - r(s), \xi)) - Q(s) \bar{P}(s) x(s - r(s), \xi) \Delta s \right] \Delta \xi + P(t) \int_{t}^{t+\omega} x(t - r(t), \xi) \Delta \xi,
$$

where

$$
G(t, s) = \frac{e_{\alpha}(s, 0)}{e_{\alpha}(t, 0) - 1}.
$$

References


