The topological conjugacy criterion for surface Morse-Smale flows with a finite number of moduli

Vladislav E. Kruglov, HSE University, Nižnij Novgorod, Russia

8ECM 2021, Portorož

25.06.2021
The results were obtained in collaboration with Olga V. Pochinka
Topological conjugacy and equivalence

• Two flows $f^t, f'^t : M \to M$ on a manifold M are called topologically equivalent if there exists a homeomorphism $h : M \to M$ sending trajectories of f^t into trajectories of f'^t preserving orientations of the trajectories.

• Two flows are called topologically conjugate if $h \circ f^t = f'^t \circ h$, it means that h sends trajectories into trajectories preserving not only directions but in addition the time of moving.

• To find an invariant showing the class of topological equivalence or topological conjugacy of flows in some class means to get a topological classification for the class.
The Morse-Smale flows

A flow on a surface is called Morse-Smale if its non-wandering set consists of a finite number of hyperbolic fixed points and finite number of hyperbolic limit cycles, besides, there is no trajectories connecting saddle points.

The most important topological invariants for Morse-Smale flows are the Leontovich-Maier’s scheme [4, 5], the Peixoto’s directed graph [6] and the Oshemkov-Sharko’s molecule [7].
The moduli of stability

- A separatrix connecting saddle points gives infinitely many conjugacy classes in one equivalence class, described by a modulus \(\frac{\lambda}{\mu} \) called the *modulus of stability* (Palis, 1978).

\[\lambda \quad \mu \]

- For surface gradient-like flows classes of topological equivalence and topological conjugacy on surfaces coincide (Kruglov, [2]).

- Any limit cycle obviously generates a *modulus* equal to its period.
The problems solved in the work

• The criterion of the moduli finiteness for the surface Morse-Smale flows;
• Topological classification in sense of conjugacy for surface Morse-Smale flows with a finite number of moduli.
Fixed points

The hyperbolicity of fixed points leads to the following types of fixed points: a sink, a saddle and a source. A flow near a fixed point is topologically conjugate with a linear flow with a sink, saddle or source respectively (Palis, de Melo [9], Robinson [10], Kruglov [2]).
Limit cycles

The hyperbolicity of limit cycles leads to the fact that limit cycles may be only stable or unstable. The neighbourhood of a limit cycle is an annulus or a Möbius band.
We define a flow $A^t : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ as $A^t(x, y) = (x, y + t)$. For $\mu \in \{-1, 1\}$, $\lambda \in \{0, 1\}$ and $T > 0$ let us consider a homeomorphism $g_{\mu, \lambda, T} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by the formula

$$g_{\mu, \lambda, T}(x, y) = (\mu \cdot 2^{(-1)^{\lambda+1}}, y - T)$$

and the group $G_{\mu, \lambda, T} = \{g_{\mu, \lambda, T}^n, n \in \mathbb{Z}\}$. Denote by $\Pi_{\mu, \lambda, T}$ a space orbit of the action of the group $G_{\mu, \lambda, T}$ on \mathbb{R}^2 and by $q_{\mu, \lambda, T} : \mathbb{R}^2 \rightarrow \Pi_{\mu, \lambda, T}$ the natural projection. Then $\Pi_{\mu, \lambda, T}$ is a cylinder for $\mu = 1$ and a Möbius band for $\mu = -1$; the flow A^t induces by $q_{\mu, \lambda, T}$ the flow $a_{\mu, \lambda, T}^t$ on $\Pi_{\mu, \lambda, T}$ with unique stable limit cycle $c_{\mu, \lambda, T} = q_{\mu, \lambda, T}(Oy)$ of the period T for $\lambda = 0$, and the flow $a_{\mu, \lambda, T}^t$ on $\Pi_{\mu, \lambda, T}$ with unique unstable limit cycle $c_{\mu, \lambda, T} = q_{\mu, \lambda, T}(Oy)$ of the period T for $\lambda = 1$.
Proposition (Irwin [1])

For every hyperbolic limit cycle \(c_i \) of a flow \(\phi^t : S \to S \) there are numbers \(\mu_i \in \{-1, 1\} \), \(\lambda_i \in \{0, 1\} \), \(T_i > 0 \) and a neighbourhood \(U_i \) such that \(\phi^t|_{U_i} \) is topologically conjugate to the flow \(a^t_{\mu_i,\lambda_i,T_i} \).

The limit cycle \(c_i \) is called a \textit{stable}, \textit{an unstable} for \(\lambda_i = 0, 1 \) respectively.
The unique foliation near limit cycle

Let $K_i = W^u_{\Omega_i}$ for an unstable cycle Ω_i and $K_i = W^s_{\Omega_i}$ for a stable cycle Ω_i, respectively.

Proposition (Kruglov, Pochinka, Talanova, [3])

There is a unique one-dimensional foliation Ξ_i in K_i whose leaves ξ_i are cross-sections for trajectories of flow $\phi^t|_{K_i}$ and

$$\phi^{T_i}(z) \in \xi_i, \, \phi^t(z) \notin \xi_i \text{ for } 0 < t < T_i, \text{ if } z \in \xi_i.$$
Recall that a modulus of topological conjugacy is an analytical parameter describing infinite many conjugacy classes in the equivalence class.

The first main result of the report is the following.

Theorem

A Morse-Smale surface flow has a finite number of moduli iff it has no a trajectory going from one limit cycle to another.

Let G be the class of Morse-Smale flow with a finite number of moduli, and let $\phi^t \in G$.

Cutting set and cutting circles. An elementary region

Let \(\mathcal{R} = \bigcup_{c \in \Omega_{\phi^t}} R_c \) be the union of the boundary circles of cycles’ es neighbourhoods. We call \(\mathcal{R} \) a cutting set and the connected components of \(\mathcal{R} \) cutting circles. Let \(\hat{S} = S \setminus \mathcal{R} \). We call an elementary region a connected component of the set \(\hat{S} \). The elementary regions, obviously, can be of the following pairwise disjoint types with respect to information about basic sets of \(\phi^t \) in the regions:

1) a region of the type \(\mathcal{L} \) contains exactly one limit cycle;

2) a region of the type \(\mathcal{A} \) contains exactly one source or exactly one sink;

3) a region of the type \(\mathcal{M} \) contains at least one saddle point;
The directed graph of a flow

Definition

A directed graph Υ_{ϕ^t} is said to be a graph of the flow $\phi^t \in G$ if

1. the vertices of Υ_{ϕ^t} bijectively correspond to the elementary regions of ϕ^t;

2. every directed edge of Υ_{ϕ^t}, which joins a vertex a with a vertex b, corresponds to the cutting circle R, which is a common boundary of the regions A and B corresponding to a and b, such that any trajectory of ϕ^t passing R goes from A to B by increasing the time.
Properties of the directed graph

We will call a \mathcal{L}-, \mathcal{A}-, or \mathcal{M}-vertex a vertex of Υ_{ϕ^t}, which corresponds to a \mathcal{L}-, \mathcal{A}-, or \mathcal{M}-region accordingly.

Proposition

Let Υ_{ϕ^t} be the directed graph of a flow $\phi^t \in G$, then:

1) every \mathcal{M}-vertex can be connected only with \mathcal{L}-vertices, furthermore, with every vertex by a single edge;

2) every \mathcal{A}-vertex can be connected only with a \mathcal{L}-vertex, furthermore, by a single edge;

3) every \mathcal{L}-vertex has degree (the number of incident edges) 1 or 2, and if its degree is 2, then both edges either enter the vertex or exit.
Equipping of the graph Υ_{ϕ^t}

The flows in \mathcal{A}-regions can belong to only the two conjugacy classes: a source pool and a sink pool, which we can distinguish by directions of edges incident to \mathcal{A}-vertices.

The flows in \mathcal{L}-regions can belong to only the four equivalence classes:
– an annulus with a stable limit cycle;
– an annulus with an unstable one;
– the Möbius band with a stable one;
– the Möbius band with an unstable one.

But every equivalence class consists of infinitely many conjugacy classes depending on a period of limit cycles. So, let us equip each \mathcal{L}-vertex with a cycle modulus, i.e. the period.
Equipping of \mathcal{M}-vertex. Constructing a surface M and a gradient-like flow on it

Consider an \mathcal{M}-region. It can be
- a 2-manifold with a boundary (with “holes”);
- a closed surface;

Attach a union D of 2-disk to each boundary component of \mathcal{M} to get a closed surface M.

Let $f^t : M \to M$ be the flow such that $f^t|_{\mathcal{M}} = \phi^t|_{\mathcal{M}}$ and that Ω_{f^t} has exactly one sink or one source in each connected component of D.
Equipping of \mathcal{M}-vertex. A cell

Let $\Omega_{f^t}^0$, $\Omega_{f^t}^1$, $\Omega_{f^t}^2$ be the sets of all sources, saddle points and sinks of f^t accordingly. By the definition of the region \mathcal{M} the flow f^t has at least one saddle point. Let

$$\tilde{M} = M \setminus (\Omega_{f^t}^0 \cup W^s_{\Omega_{f^t}^1} \cup W^u_{\Omega_{f^t}^1} \cup \Omega_{f^t}^2).$$

A connected component of \tilde{M} is called a cell.

Proposition (Peixoto [7])

Every cell J of the flow f^t contains a single sink ω and a single source α in its boundary, and the whole cell is the union of trajectories going from α to ω.
Equipping of \mathcal{M}-vertex. A triangle region

Let us choose a t-curve in each cell J which is some usual trajectory in J. Let us call an u-curve an unstable saddle separatrix with a sink in its closure, an s-curve a stable saddle separatrix with a source in its closure. We will call a triangle region Δ the connecting component of \bar{M}.

Proposition (Oshemkov-Sharko [6])

Every triangle region Δ is homeomorphic to an open disk and its boundary consists of an unique t-curve, an unique u-curve and an unique s-curve.
The three-colour graph for a flow

We say that a three-colour graph Γ_M corresponds to f^t if:
1) the vertices of Γ_M bijectively correspond to the triangle regions of Δ_f^t;
2) two vertices of Γ_M are incident to an edge of colour s, t or u if the polygonal regions corresponding to these vertices has a common s-, t- or u–curve; that establishes an one-to-one correspondence between the edges of Γ_M and the colour curves;

Definition

We say that the graph Γ_M is the three-colour graph of the flow f^t corresponding to $\phi^t|_M$.
A flow and its three-colour graph
Equipment of some directed edges

Let us denote by π_{f^t} the correspondence described above between elements of f^t and Γ_M. Let ut, st- and su cycles be the cycles of Γ_M consisting only of the edges of corresponding colours.

Proposition

The projection π_{f^t} gives an one-to-one correspondence between the sets $\Omega_{f^t}^0$, $\Omega_{f^t}^1$, $\Omega_{f^t}^2$ and the sets of tu-cycles, su-cycles of the length 4, and st-cycles respectively.

By our construction $M = M \cup D$ each connected component of D contains one sink ω (source α) corresponding to R_c for c of ϕ^t, which corresponds to an $(\mathcal{M}, \mathcal{L})$-edge ($(\mathcal{L}, \mathcal{M})$-edge) of Υ_{ϕ^t}. Thus we induce an orientation from R_c to the cycle.
The equipped graph

Definition

Let Υ_{ϕ^t} be the directed graph of a flow $\phi^t \in G$. We will say that Υ_{ϕ^t} is the **equipped graph** of ϕ^t and denote it by $\Upsilon^*_{\phi^t}$ if:

1. every \mathcal{M}-vertex is equipped with a four-colour graph $\Gamma_{\mathcal{M}}$ corresponding to the flow f^t constructed before;

2. every edge $((\mathcal{M}, \mathcal{L}))$ is equipped with an oriented tu-cycle (st-cycle) $\tau_{\mathcal{M},\mathcal{L}}$ ($\tau_{\mathcal{L},\mathcal{M}}$) of $\Gamma_{\mathcal{M}}$ corresponding to the limit cycle c of \mathcal{L} and oriented consistently with R_c.

3. every \mathcal{L}-vertex is equipped with the cycle modulus T_c.
An example of the equipped graph construction
The classification result

Definition

Equipped graphs $\Upsilon^*_\phi^t$ and $\Upsilon^*_\phi''^t$ are said to be isomorphic if there is an one-to one correspondence ξ between all edges and vertices of $\Upsilon^*_\phi^t$ and all edges and vertices of $\Upsilon^*_\phi''^t$ preserving their equipments in the following way:

1. the cycle moduli of vertices \mathcal{L} and $\xi(\mathcal{L})$ are equal;
2. for vertices \mathcal{M} and $\xi(\mathcal{M})$, there is an isomorphism $\psi_\mathcal{M}$ of the three-colour graphs $\Gamma_\mathcal{M}, \Gamma_{\xi(\mathcal{M})}$ such that $\psi_\mathcal{M}(\tau_{\mathcal{M},\mathcal{L}}) = \tau_{\xi(\mathcal{M}),\xi(\mathcal{L})}$ and the orientations of $\psi_\mathcal{M}(\tau_{\mathcal{M},\mathcal{L}})$ and $\tau_{\xi(\mathcal{M}),\xi(\mathcal{L})}$ coincide (similarly for $\tau_{\mathcal{L},\mathcal{M}}$).

Theorem

*Flows $\phi^t, \phi''^t \in G$ are topologically conjugate if and only if the equipped graphs $\Upsilon^*_\phi^t$ and $\Upsilon^*_\phi''^t$ are isomorphic.*
References

THANKS FOR YOUR ATTENTION