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Hardy—Littlewood-Sobolev Inequality

Theorem (HLS). Let 0 < v < n, 1 < p < p* < co. Suppose that
11

i % Then there is a positive constant C such that

IKaf | o* rry < CllfllLpm, f € LP(RT),

where

Kaf(x) :/|Xj(;/|)nady.
Ro
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Quasi-metric measure space

Let (X, d, 1) be a space of non-homogeneous type, i.e., (X, d,u) be a
topological space endowed with a locally finite complete measure i and
quasi-metric d : X x X +— R satisfying the following conditions:

i) d(x,y) =0if and only if x = y;

i) d(x,y) = d(y, x) for all x,y € X;

iii) there exist a constant k > 1 such that for all x,y,z € X,

d(x,y) < sld(x, 2) + d(z,y)];

(iv) for every neighbourhood N of a point x € X there exists r > 0 such
that the ball B(x,r) ={y € X : d(x,y) < r} is contained in N.

It is also assumed that all balls B(x, r) in X are measurable, and that
pu{x} =0 for all x € X.
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Fractional Integral Operator

Let

(N0 = [ Gt D duty). 07 <1, xEX
X

be fractional integral with a measure p.
Taking, for example, new quasi-metric di(x,y) = d(x, y)"", n > 0, then
we can rewrite I, f as follows;

(Taf)(x):/dl(:(j//))nadp(y), O<a<n, xeX,
X

where o = yn. Thus we have fractional integral operator defined on
(Xa dlv M)
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Potentials with measure. Formulation of the problem

Let (X, d, 1) be a non-homogeneous space. Let 1 < p < g < oo and let
0 < v < 1. To give a complete characterization of a measure p such that

the inequality
[l ax ) < Cllfllo(x s € LP(X, 1),

holds.
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Potentials with measure. HLS- type inequality

The following theorem was proved in 2001 in [V. Kokilashvili and A.M.
2001] (For Euclidean spaces see V.Kokilashvili: 1992).

Theorem A. Let 1 < p < g < oo and let 0 <~ < 1. Then the inequality

”I’YfHLq(X,,u) < CHfHLP(X,,u,)a fe LP(X,M),

holds if and only if there exists a positive constant ¢ such that for all
x € X and r € (0, diam(X)),

uB(x,r) < crf, (0.1)
where (3 is defined as follows:

_ pq(l—7)
frm (0.2)
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Potentials with measure. HLS- type inequality

Multilinear characterization: V. Kokilashvili, M. Mastylo and A. M., JGA,
2020.

Compactness characterization: V. Kokilashvili, M. Mastylo and A. M.,
FCAA, 20109.
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Potential with measure

As a Corollary we heve HLS type inequality (see also J. Garcia-Cuerva and
A. E. Gatto, 2003):

Corollary A. Let1 < p < % where 0 < v < 1. We set p* := ﬁ. Then
the Hardy—Littlewood—-Sobolev type inequality

||I’7f||LP*(X,p,) < CHfHLP(Xw)v fe LP(X,ILL),

holds if and only if there exists a positive constant ¢ such that for all
x € X and r € (0, diam(X)),

uB(x,r) <ecr. (0.3)
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Grand Lebesgue spaces

In 1992 T. lwaniec and C. Sbordone, in their studies related with the
integrability properties of the Jacobian in a bounded open set Q of R”,
introduced a new type of function spaces LP)(Q), called grand Lebesgue
spaces. A generalized version of these spaces denoted by LP)}(Q)
appeared in L. Greco, T. Iwaniec and C. Sbordone in 1997.

Harmonic analysis related to these spaces and their associate spaces
(called small Lebesgue spaces), was intensively studied during last years by
many authors due to various applications.
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Grand Lebesgue spaces

Let 6 be a positive number and let u(X) < co. Denote by LP}?(X, 1) the
grand Lebesgue space defined by the norm

0
fll,m, = su p=n || f|;p—
| HLP)G(X,M) 0<77§2—1n 11l e n(X,u)>

where L"(X,u), 1 < r < oo, is the classical Lebesgue space with respect
to a measure p, and defined by the norm:

I FllLrox ) = </|f(X)!’du(x)>1/r.
X

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand Le8ECM, Harmonic Analysis and PDEs, Portorc



Some properties of grand Lebesgue spaces

The grand Lebesgue space L”)’e(Q) is non-reflexive, non-separable and, in
general, is non-rearrangement invariant (see, e.g., A. Fiorenza, 2000).
The following properties hold:

(a) C§°(Q) is not dense in LP)O(Q);

(b) LP(Q) < LPO(Q) — LP~5(Q);

(c) for example, the function x~1/P belongs to LP)}1((0,1))\ LP((0,1));
(d) elements of the closure of C5°(Q) in LP}(Q) are characterized by the

6
following property: lim e»=< || f|| p—<(q) = 0.
e—0
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Potentials with measure in Grand Lebesgue spaces

Our main statement reads as follows:

Theorem

Let u(X) <oo,1<p<qg<ooandLet0<~y<1. Suppose that > 0.

0
Then 1, is bounded from LP}(X, ) to Lq)’q?(X, w) if and only if there is
a positive constant ¢ such that

pB(x,r) < crf,
holds for all x € X and r € (0, diam(X)), where (3 is defined by (0.2), i.e.

_ pq(1—7)
Pg+p—q
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Generalization of the Sobolev Inequality

Corollary

Let u(X) < oo, 1< p<ooandlet0<y< ,l). Wesetp*:ﬁ.
Suppose that 0 > 0. Then there is a positive constant C such that for all
f e LP9(X, ), the inequality

Il oy < Clfllogx

holds if and only if holds if there exists a positive constant ¢ such that for
all x € X and r € (0, diam(X)),

uB(x,r) <ecr. (0.4)

v
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The sharpness of the second parameter

Propositionlet 1 < p < g < oo and 0 < v < 1. Suppose that (X, d, i)
be a non-homogeneous space. Let there exist a positive constant b such
that for all x € X and r € (0, diam (X)),

w(B(x,r)) > br?, (0.5)

where 3 is defined by (0.2). Then the boundedness of I, from LP)%1(X, 11)
to L9Y2(X, 1) implies that 6, > 91‘7
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Grand Morrey spaces

Let (X, d, ) be a quasi-metric measure space and let I\/Ip’ ,(X) denote the
Morrey space defined with respect to a measure p WhICh is the class at all
measurable functions f : X — R for which the norm

1
HfHMP’(X) = SUP WH [ P (B(a,t))
t>0

1/p

1
Sg)li +/p—1/n)t / £ (y)[Pduly)
0 B(2,t)

is finite, where 1 < p<r < oo, £> 0. If p=r, then Mﬁ’f(X) coincides
with the Lebesgue space LP(X, p). If £ =1, then M[";(X) is denoted by
MET(X).
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Grand Morrey spaces

On the base of Ml’j’g we introduce grand Morrey space denoted by
Mﬁ?ér’e(X) and defined by the norm
I£]

6
’ = f —e,r
o) = o 20 Wl

where 6 > 0.
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Grand Morrey spaces

Grand Morrey spaces defined on finite measure with doubling condition
were introduced by A.M. in 2009 (see H. Rafeiro, 2012 for further
generalizations).

Let l<s<p<r<ooandlet

uB(x,r) < cr’.
Then the following embeddings hold:
LX) = MEG(X) = MY (X) = MI0(X).
If u(X) < oo, then
ML (X) < £2(X),
where Eﬁ)’e(X) is the grand Lebesgue space defined by the following norm:

_ 0
191 o =50 < ler-ccx,
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Boundedness in grand Morrey spaces

Theorem
Letl < p<qg<ooandletQ<y<1. Suppose that the condition
uB(x,r) < cr

is satisfied, where (3 is defined by (0.2). Suppose that 1 < r,s < oo and let

1

1

1 1

Then I, is bounded from MEY(X) to MZ?E’G(X)-
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The investigation was carried out jointly with V. Kokilashvili. The results
are published in [KoMe, 2001].

The work was supported by the Shota Rustaveli National Foundation grant
of Georgia (Project No. DI-18-118).
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