Atkin-Lehner theory for Drinfeld modular forms

Maria Valentino

8th European Congress of Mathematics
20-26 June 2021 Portorož - Slovenia

Minisymposium Number Theory
22 June 2021
Let $k, N \in \mathbb{N}$ and $p \in \mathbb{Z}$ a prime.

Let $S_k(\Gamma_0(N))$ be the \mathbb{C}-vector space of cusp forms of level N and weight k.

Let T_p be the Hecke operator if $p \nmid N$, and let U_p be the Atkin-Lehner operator if $p | N$.
Let $k, N \in \mathbb{N}$ and $p \in \mathbb{Z}$ a prime.

Let $S_k(\Gamma_0(N))$ be the \mathbb{C}-vector space of cusp forms of level N and weight k.

Let T_p be the Hecke operator if $p \nmid N$, and let U_p be the Atkin-Lehner operator if $p | N$. If $M | N$, we observe that $\Gamma_0(N) \subset \Gamma_0(M) \implies S_k(\Gamma_0(M)) \subset S_k(\Gamma_0(N))$. Then, forms in $S_k(\Gamma_0(N))$ can be divided in

Oldforms

All cusp forms coming from a lower level.

Newforms

The orthogonal complement of oldforms wrt the Petersson inner product.

T_p is self-adjoint and a diagonalizing basis is made of eigenforms (simultaneous eigenvectors).
Let $k, N \in \mathbb{N}$ and $p \in \mathbb{Z}$ a prime.

Let $S_k(\Gamma_0(N))$ be the \mathbb{C}-vector space of cusp forms of level N and weight k.

Let T_p be the Hecke operator if $p \nmid N$, and let U_p be the Atkin-Lehner operator if $p|N$.

If $M|N$, we observe that $\Gamma_0(N) \subset \Gamma_0(M) \implies S_k(\Gamma_0(M)) \subset S_k(\Gamma_0(N))$. Then, forms in $S_k(\Gamma_0(N))$ can be divided in

Oldforms

All cusp forms coming from a lower level.

Newforms

The orthogonal complement of oldforms wrt the Petersson inner product.

T_p is self-adjoint and a diagonalizing basis is made of eigenforms (simultaneous eigenvectors).

Consequences:

- U_p eigenvalues have slope, i.e. p-adic valuation, $< k - 1$ in case of oldforms and $k/2 - 1$ in case of newforms;
- Gouvêa-Mazur conjectures, Coleman families and much more.
Let \(q = p^r \) for a fixed prime \(p \in \mathbb{Z} \).

\[
\begin{array}{c|c|c|c|c|c}
A = \mathbb{F}_q[t] & \mathbb{Z} & \Omega := \mathbb{P}^1(\mathbb{C}_\infty) - \mathbb{P}^1(K_\infty) & \mathbb{H} \\
K = \mathbb{F}_q(t) & \mathbb{Q} & GL_2(A) & SL_2(\mathbb{Z}) \\
K_\infty = \mathbb{F}_q((1/t)) & \mathbb{R} & \Gamma \backslash \mathbb{P}^1(K) & \text{cusps} \\
\mathbb{C}_\infty = \hat{K}_\infty & \mathbb{C} & & \\
\end{array}
\]
Let $q = p^r$ for a fixed prime $p \in \mathbb{Z}$.

<table>
<thead>
<tr>
<th>$A = \mathbb{F}_q[t]$</th>
<th>\mathbb{Z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = \mathbb{F}_q(t)$</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>$K_{\infty} = \mathbb{F}_q((1/t))$</td>
<td>\mathbb{R}</td>
</tr>
<tr>
<td>$\mathbb{C}{\infty} = \hat{K}{\infty}$</td>
<td>\mathbb{C}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Omega := \mathbb{P}^1(\mathbb{C}{\infty}) - \mathbb{P}^1(K{\infty})$</th>
<th>\mathbb{H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GL_2(A)$</td>
<td>$SL_2(\mathbb{Z})$</td>
</tr>
<tr>
<td>$\Gamma \backslash \mathbb{P}^1(K)$</td>
<td>cusps</td>
</tr>
</tbody>
</table>

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K_{\infty})$, $k, m \in \mathbb{Z}$ and $f : \Omega \to \mathbb{C}_{\infty}$, we define

$$(f |_{k,m} \gamma)(z) := f(\gamma z)(\det \gamma)^m (cz + d)^{-k}.$$
Let \(q = p^r \) for a fixed prime \(p \in \mathbb{Z} \).

\[
\begin{array}{c|c}
A &= \mathbb{F}_q[t] \\
K &= \mathbb{F}_q(t) \\
K_\infty &= \mathbb{F}_q((1/t)) \\
\mathbb{C}_\infty &= \hat{K_\infty}
\end{array}
\begin{array}{c|c}
\Omega := \mathbb{P}^1(\mathbb{C}_\infty) - \mathbb{P}^1(K_\infty) & \mathbb{H} \\
GL_2(A) & SL_2(\mathbb{Z}) \\
\Gamma \backslash \mathbb{P}^1(K) & \text{cusps}
\end{array}
\]

For \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K_\infty) \), \(k, m \in \mathbb{Z} \) and \(f : \Omega \to \mathbb{C}_\infty \), we define

\[
(f \mid_{k,m} \gamma)(z) := f(\gamma z)(\det \gamma)^m(cz + d)^{-k}.
\]

Fix \(\Gamma = \Gamma_0(m) = \{ \gamma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} (\text{mod } m) \} \), \(m \) ideal of \(A \).
Let \(q = p^r \) for a fixed prime \(p \in \mathbb{Z} \).

<table>
<thead>
<tr>
<th>(A = \mathbb{F}_q[t])</th>
<th>(\mathbb{Z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K = \mathbb{F}_q(t))</td>
<td>(\mathbb{Q})</td>
</tr>
<tr>
<td>(K_\infty = \mathbb{F}_q((1/t)))</td>
<td>(\mathbb{R})</td>
</tr>
<tr>
<td>(\mathbb{C}\infty = \hat{K}\infty)</td>
<td>(\mathbb{C})</td>
</tr>
<tr>
<td>(\Omega := \mathbb{P}^1(\mathbb{C}\infty) - \mathbb{P}^1(K\infty))</td>
<td>(\mathbb{H})</td>
</tr>
<tr>
<td>(GL_2(A))</td>
<td>(SL_2(\mathbb{Z}))</td>
</tr>
<tr>
<td>(\Gamma \backslash \mathbb{P}^1(K))</td>
<td>cusps</td>
</tr>
</tbody>
</table>

For \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in GL_2(K_\infty) \),\(k,m \in \mathbb{Z} \) and \(f : \Omega \to \mathbb{C}_\infty \), we define

\[
(f|_{k,m\gamma})(z) := f(\gamma z)(\det \gamma)^m(cz + d)^{-k}.
\]

Fix \(\Gamma = \Gamma_0(m) = \{ \gamma \equiv \left(\begin{array}{cc} * & * \\ 0 & * \end{array} \right) \pmod{m} \}, m \text{ ideal of } A. \)

Definition

A rigid analytic function \(f : \Omega \to \mathbb{C}_\infty \) is called a *Drinfeld modular form of weight \(k \) and type \(m \in \mathbb{Z}/(q - 1)\mathbb{Z} \) for \(\Gamma \) if

- \(f \) is holomorphic on \(\Omega \) and at all cusps;
- \((f|_{k,m\gamma})(z) = f(z) \ \forall \gamma \in \Gamma. \)

A Drinfeld modular form \(f \) is called a *cusp form* if it vanishes at all cusps.
We denote by $M_{k,m}(\Gamma_0(m))$ and $S_{k,m}(\Gamma_0(m))$ the finite dimensional \mathbb{C}_∞-vector spaces of Drinfeld modular forms and Drinfeld cusp forms of weight k, type m and level m.

From now on $m = (\pi)$, $p = (P)$ with $\pi, P \in A$ monic and P irreducible of degree d with $(\pi, P) = 1$.

We have Hecke operators $T_p (p + m)$ and $U_p (p|m)$ acting on $M_{k,m}(\Gamma_0(m))$.
We denote by $M_{k,m}(\Gamma_0(m))$ and $S_{k,m}(\Gamma_0(m))$ the finite dimensional \mathbb{C}_∞-vector spaces of Drinfeld modular forms and Drinfeld cusp forms of weight k, type m and level m.

From now on $m = (\pi)$, $p = (P)$ with $\pi, P \in A$ monic and P irreducible of degree d with $(\pi, P) = 1$.

We have Hecke operators $T_p (p + m)$ and $U_p (p|m)$ acting on $M_{k,m}(\Gamma_0(m))$.

Consider the *degeneracy maps*:

\[
D_1, D_p : S_{k,m}(\Gamma_0(m)) \to S_{k,m}(\Gamma_0(mp)) \\
f \mapsto f \\
f \mapsto f|_{k,m} \left(\begin{array}{cc} P & 0 \\ 0 & 1 \end{array} \right)
\]
We denote by $M_{k,m}(\Gamma_0(m))$ and $S_{k,m}(\Gamma_0(m))$ the finite dimensional \mathbb{C}_∞-vector spaces of Drinfeld modular forms and Drinfeld cusp forms of weight k, type m and level m.

From now on $m = (\pi), \ p = (P)$ with $\pi, P \in A$ monic and P irreducible of degree d with $(\pi, P) = 1$.

We have Hecke operators $T_p (p + m)$ and $U_p (p|m)$ acting on $M_{k,m}(\Gamma_0(m))$.

Consider the *degeneracy maps*:

$$
D_1, D_p : S_{k,m}(\Gamma_0(m)) \to S_{k,m}(\Gamma_0(mp))
$$

$$
f \mapsto f
$$

$$
f \mapsto f|_{k,m} \left(\begin{array}{cc} P & 0 \\ 0 & 1 \end{array} \right)
$$

Definition

The space of *p-oldforms of level mp*, denoted by $S_{k,m}^{\text{p-old}}(\Gamma_0(mp))$, is the subspace of $S_{k,m}(\Gamma_0(mp))$ generated by the set

$$
\{(D_1, D_p)(f_1, f_2) = D_1 f_1 + D_p f_2 : (f_1, f_2) \in S_{k,m}(\Gamma_0(m))^2\}.
$$
Let R_{m}^{mp} be a set of representatives for $\Gamma_{0}(mp) \backslash \Gamma_{0}(m)$.
Let R_m^{mp} be a set of representatives for $\Gamma_0(\text{mp}) \backslash \Gamma_0(m)$. The trace map is

$$T_m^{\text{mp}} : S_{k,m}(\Gamma_0(\text{mp})) \to S_{k,m}(\Gamma_0(m))$$

$$f \mapsto \sum_{\gamma \in R_m^{\text{mp}}} f |_{k,m} \gamma.$$
Let R_{m}^{mp} be a set of representatives for $\Gamma_{0}(mp) \backslash \Gamma_{0}(m)$. The **trace map** is

$$Tr_{m}^{mp} : S_{k,m}(\Gamma_{0}(mp)) \to S_{k,m}(\Gamma_{0}(m))$$

$$f \mapsto \sum_{\gamma \in R_{m}^{mp}} f |_{k,m} \gamma.$$

and the **twisted trace map** is

$$Tr'_{m}^{mp} : S_{k,m}(\Gamma_{0}(mp)) \to S_{k,m}(\Gamma_{0}(m))$$

$$f \mapsto \sum_{\gamma \in R_{m}^{mp}} (f |_{k,m} \left(\begin{array}{cc} 0 & 1 \\ \pi P & 0 \end{array} \right) \right) |_{k,m} \gamma$$

where $\left(\begin{array}{cc} 0 & 1 \\ \pi P & 0 \end{array} \right)$ is a matrix representing the **Fricke involution** of level mp

$$Fr^{(mp)} : S_{k,m}(\Gamma_{0}(mp)) \to S_{k,m}(\Gamma_{0}(mp))$$

$$f \mapsto f |_{k,m} \left(\begin{array}{cc} 0 & -1 \\ \pi P & 0 \end{array} \right)$$
Let R_{m}^{mp} be a set of representatives for $\Gamma_{0}(mp) \backslash \Gamma_{0}(m)$.

The **trace map** is

$$ Tr_{m}^{mp} : S_{k,m}(\Gamma_{0}(mp)) \rightarrow S_{k,m}(\Gamma_{0}(m)) $$

$$ f \mapsto \sum_{\gamma \in R_{m}^{mp}} f|_{k,m} \gamma. $$

and the **twisted trace map** is

$$ Tr_{m}^{\prime}mp : S_{k,m}(\Gamma_{0}(mp)) \rightarrow S_{k,m}(\Gamma_{0}(m)) $$

$$ f \mapsto \sum_{\gamma \in R_{m}^{mp}} (f|_{k,m}(\begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}))|_{k,m} \gamma $$

where $\begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}$ is a matrix representing the **Fricke involution** of level mp

$$ Fr^{(mp)} : S_{k,m}(\Gamma_{0}(mp)) \rightarrow S_{k,m}(\Gamma_{0}(mp)) $$

$$ f \mapsto f|_{k,m}(\begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}) $$

Definition

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_{0}(mp))$, is given by

$Ker(Tr_{m}^{mp}) \cap Ker(Tr_{m}^{\prime}mp)$.
Proposition (Bandini, V. - 2020)

If \(\dim_{\mathbb{C}_\infty} S_{k,m}(GL_2(A)) \leq 1 \), then \(S_{k,m}(\Gamma_0(t)) \) is direct sum of oldforms and newforms.
Proposition (Bandini, V. - 2020)

If \(\dim_{\mathbb{C}} S_{k,m}(GL_2(A)) \leq 1 \), then \(S_{k,m}(\Gamma_0(t)) \) is direct sum of oldforms and newforms.

\[
S_{k,m}(\Gamma_0(p)) \quad \text{and} \quad S_{k,m}(GL_2(A))
\]

Theorem (Bandini, V. - 2020)

We have that \(S_{k,m}(\Gamma_0(p)) = S_{k,m}^{p-new}(\Gamma_0(p)) \oplus S_{k,m}^{p-old}(\Gamma_0(p)) \) if and only if the map
\[
D := Id - P^{k-2m}(Tr_{t(1)}^p)^2
\]
is bijective on \(S_{k,m}(\Gamma_0(p)) \).
Proposition (Bandini, V. - 2020)

If \(\dim_{\mathbb{C}} S_{k,m}(GL_2(A)) \leq 1 \), then \(S_{k,m}(\Gamma_0(t)) \) is direct sum of oldforms and newforms.

Theorem (Bandini, V. - 2020)

We have that \(S_{k,m}(\Gamma_0(p)) = S_{k,m}^{p-new}(\Gamma_0(p)) \oplus S_{k,m}^{p-old}(\Gamma_0(p)) \) if and only if the map \(D := Id - P^{k-2m}(Tr_{(1)}^p)^2 \) is bijective on \(S_{k,m}(\Gamma_0(p)) \).

Theorem (Bandini, V. - 2020)

If the map \(D := Id - (\pi P)^{k-2m}(Tr_{m}^{mp})^2 \) is bijective on \(S_{k,m}(\Gamma_0(mp)) \), then we have the direct sum decomposition
\[
S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))
\]

Problem: to get the full equivalence \(Ker(D) \) should contain a form \(f \neq 0 \) and also \(Fr^{(m)}(f) \) for a suitable \(f \in S_{k,m}(\Gamma_0(m)) \).
Let \(n = (\nu), \mathfrak{d} = (\delta) \subset A \) be ideals such that \(\mathfrak{d} \parallel n \). Denote by \(W^n_\mathfrak{d} \) a matrix of the form
\[
\begin{pmatrix}
\delta a & b \\

\nu c & \delta d \\
\end{pmatrix}
\]
with \(a, b, c, d \in A, \delta^2 ad - \nu cb = \zeta \delta \) and \(\zeta \in \mathbb{F}_q^* \).

It is easy to verify that such matrices are in the normalizer of \(\Gamma_0(n) \).
Let \(n = (\nu), \mathfrak{d} = (\delta) \subset A \) be ideals such that \(\mathfrak{d} \| n \). Denote by \(W^n_{\mathfrak{d}} \) a matrix of the form
\[
\begin{pmatrix}
\delta a & b \\
\nu c & \delta d
\end{pmatrix}
\]
with \(a, b, c, d \in A, \ \delta^2 ad - \nu cb = \zeta \delta \) and \(\zeta \in \mathbb{F}_q^* \).

It is easy to verify that such matrices are in the normalizer of \(\Gamma_0(n) \).

Definition

Let \(n = (\nu), \mathfrak{d} = (\delta) \subset A \) be ideals such that \(\mathfrak{d} \| n \). The **(partial) Atkin–Lehner involution** \(W^n_{\mathfrak{d}} \) acting on \(S_{k,m}(\Gamma_0(n)) \) is:

\[
W^n_{\mathfrak{d}} : S_{k,m}(\Gamma_0(n)) \to S_{k,m}(\Gamma_0(n))
\]

\[
f(z) \mapsto (f|_{k,m} W^n_{\mathfrak{d}})(z)
\]

for any \(W^n_{\mathfrak{d}} \) as above.
Let \(n = (\nu), d = (\delta) \subset A \) be ideals such that \(d || n \). Denote by \(W^n_\delta \) a matrix of the form

\[
\begin{pmatrix}
\delta a & b \\
\nu c & \delta d
\end{pmatrix}
\]

with \(a, b, c, d \in A, \delta^2 ad - \nu cb = \zeta \delta \) and \(\zeta \in \mathbb{F}_q^* \).

It is easy to verify that such matrices are in the normalizer of \(\Gamma_0(n) \).

Definition

Let \(n = (\nu), d = (\delta) \subset A \) be ideals such that \(d || n \). The (partial) Atkin–Lehner involution \(W^n_\delta \) acting on \(S_{k,m}(\Gamma_0(n)) \) is:

\[
W^n_\delta : S_{k,m}(\Gamma_0(n)) \to S_{k,m}(\Gamma_0(n))
\]

\[
f(z) \mapsto (f|_{k,m} W^n_\delta)(z)
\]

for any \(W^n_\delta \) as above.

If \(d = n \) we have that \(W^n_n \) is the (full) Atkin–Lehner involution (Fricke involution) and it can be represented by the matrix

\[
W^n_n = \begin{pmatrix} 0 & -1 \\ \nu & 0 \end{pmatrix}.
\]
Lemma (V. - 2021)

Let \(n = (\nu), \mathfrak{d} = (\delta) \subset A \) be ideals such that \(\mathfrak{d} | n \). If \(f \in S_{k,m}(\Gamma_0(\mathfrak{d})) \) then

\[
f |_{k,m} \left(\begin{array}{cc} \nu & 0 \\ \delta & 1 \end{array} \right) := D_{\frac{n}{\mathfrak{d}}}(f) = f |_{k,m} \left(W_n^\mathfrak{d} \right) \in S_{k,m}(\Gamma_0(n)).
\]
Lemma (V. - 2021)

Let \(n = (\nu), \mathfrak{d} = (\delta) \subset A \) be ideals such that \(\mathfrak{d}||n \). If \(f \in S_{k,m}(\Gamma_0(\mathfrak{d})) \) then

\[
f |_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0 \\ 0 & 1 \end{pmatrix} := D_{\frac{n}{\delta}}(f) = f |_{k,m} W_{\frac{n}{\delta}}^n \in S_{k,m}(\Gamma_0(n)).
\]

○ If \(m = (\pi), p = (P) \subset A \) with \((\pi, P) = 1 \) and \(P \) irreducible
Lemma (V. - 2021)

Let \(n = (\nu) \), \(\mathfrak{d} = (\delta) \subset A \) be ideals such that \(\mathfrak{d} | n \). If \(f \in S_{k,m}(\Gamma_0(\mathfrak{d})) \) then

\[
f |_{k,m} \begin{pmatrix} \nu & 0 \\ \delta & 1 \end{pmatrix} := D_{\frac{\nu}{\delta}}(f) = f |_{k,m} W_{\frac{n}{\mathfrak{d}}} \in S_{k,m}(\Gamma_0(n)).
\]

○ If \(m = (\pi) \), \(p = (P) \subset A \) with \((\pi, P) = 1 \) and \(P \) irreducible

\[
S_{k,m}(\Gamma_0(mp)) \\
| \\
S_{k,m}(\Gamma_0(m))
\]

\[
D_p(f) = W_{mp}(f) \\
D_1(f) = W_{mp}(f)
\]
Lemma (V. - 2021)

Let \(n = (\nu), d = (\delta) \subset A \) be ideals such that \(d \| n \). If \(f \in S_{k,m}(\Gamma_0(d)) \) then

\[
f |_{k,m} \left(\begin{array}{cc} \nu & 0 \\ \delta & 1 \end{array} \right) := D_{\frac{n}{\delta}}(f) = f |_{k,m} W_{\frac{n}{\delta}} \in S_{k,m}(\Gamma_0(n)).
\]

○ If \(m = (\pi), p = (P) \subset A \) with \((\pi, P) = 1 \) and \(P \) irreducible

\[
\begin{align*}
S_{k,m}(\Gamma_0(mp)) & \xrightarrow{D_p(f), D_1(f)} S_{k,m}(\Gamma_0(m)) \ni f \\
D_p(f) & = W_{mp}^p(f) \\
D_1(f) & = W_{mp}^1(f)
\end{align*}
\]
Lemma (V. - 2021)

Let $n = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} | n$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f |_{k,m}\left(\begin{array}{cc}
\frac{\nu}{\delta} & 0 \\
0 & 1
\end{array}\right) := D_{\frac{n}{\delta}}(f) = f |_{k,m} W_{\mathfrak{n}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(n)).$$

○ If $m = (\pi), p = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

$$S_{k,m}(\Gamma_0(mp)) \ni D_p(f), D_1(f)$$

$$S_{k,m}(\Gamma_0(m)) \ni f$$

$$D_p(f) = W_p^{mp}(f)$$

$$D_1(f) = W_1^{mp}(f)$$

$$S_{k,m}^{p-old}(\Gamma_0(mp)) = \text{Span}\{W_1^{mp}(S_{k,m}(\Gamma_0(m))), W_p^{mp}(S_{k,m}(\Gamma_0(m)))\}.$$
Lemma (V. - 2021)

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} \| \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$
\begin{pmatrix}
\nu & 0 \\
\delta & 1
\end{pmatrix} := D_{\mathfrak{n} \delta}(f) = f \mid_{k,m} W_{\mathfrak{n} \delta} \in S_{k,m}(\Gamma_0(\mathfrak{n})).
$$

○ If $\mathfrak{m} = (\pi), \mathfrak{p} = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

\begin{align*}
S_{k,m}(\Gamma_0(\mathfrak{mp})) &\ni D_p(f), D_1(f) \\
S_{k,m}(\Gamma_0(\mathfrak{m})) &\ni f
\end{align*}

$$
\begin{align*}
D_p(f) &= W_{\mathfrak{mp}}(f) \\
D_1(f) &= W_{1\mathfrak{mp}}(f)
\end{align*}
$$

$$
S_{k,m}^{p-old}(\Gamma_0(\mathfrak{mp})) = Span\{W_{1\mathfrak{mp}}(S_{k,m}(\Gamma_0(\mathfrak{m}))), W_{\mathfrak{mp}}(S_{k,m}(\Gamma_0(\mathfrak{m})))\}.
$$

Theorem (V. - 2021)

With assumptions on \mathfrak{m} and \mathfrak{p} as above, let $\mathfrak{d} = (\delta)$ be such that $\delta \| \pi$. Then

$$
\begin{align*}
W_{\delta \mathfrak{mp}}(T_p(f)) &= T_p(W_{\delta \mathfrak{mp}}(f)) \text{ if } f \in S_{k,m}(\Gamma_0(\mathfrak{m})) \\
W_{\delta \mathfrak{mp}}(U_p(f)) &= U_p(W_{\delta \mathfrak{mp}}(f)) \text{ if } f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))
\end{align*}
$$
Recall that for $f \in S_{k,m}(\Gamma_0(mp))$, the trace is $\text{Tr}_m^{mp}(f) = \sum_{\gamma \in R_m^{mp}} f|_{k,m \gamma}$.

Proposition (V. - 2021)

With notations as above, we have:

$$W_{mp}^{mp} \circ \text{Tr}_m^{mp}(d) = \delta_2^{mp} - k \text{Tr}_m^{mp}(mp^{2}d)$$

if $p \divides d$.

The above proposition implies

$$\text{Ker}(\text{Tr}_m^{mp}(mp)) = \text{Ker}(\text{Tr}_m^{mp}(p)).$$
Recall that for \(f \in S_{k,m}(\Gamma_0(mp)) \), the trace is \(Tr^mp(f) = \sum_{\gamma \in R^mp} f|_{k,m\gamma} \).

Definition

For a \(f \in S_{k,m}(\Gamma_0(mp)) \) and any divisor \(\mathfrak{d} \) of \(mp \) such that \(\mathfrak{d} | mp \), we define the \(\mathfrak{d} \)-twisted trace map as

\[
Tr^mp(\mathfrak{d}) := Tr^mp \circ W^mp_{\mathfrak{d}} : S_{k,m}(\Gamma_0(mp)) \to S_{k,m}(\Gamma_0(m))
\]

\[
f \mapsto \sum_{\gamma \in R^mp_{\mathfrak{d}}} (f|_{k,mW^mp_{\mathfrak{d}}})|_{k,m\gamma}.
\]
Recall that for \(f \in S_{k,m}(\Gamma_0(mp)) \), the trace is \(Tr_m^{mp}(f) = \sum_{\gamma \in R_m^{mp}} f_{k,m}\gamma \).

Definition

For a \(f \in S_{k,m}(\Gamma_0(mp)) \) and any divisor \(\mathfrak{d} \) of \(mp \) such that \(\mathfrak{d}||mp \), we define the \(\mathfrak{d} \)-twisted trace map as

\[
Tr_m^{mp(\mathfrak{d})} := Tr_m^{mp} \circ W_{\mathfrak{d}}^{mp} : S_{k,m}(\Gamma_0(mp)) \to S_{k,m}(\Gamma_0(m))
\]

\[
f \mapsto \sum_{\gamma \in R_m^{mp}} (f_{k,m} W_{\mathfrak{d}}^{mp})_{k,m}\gamma.
\]

Proposition (V. - 2021)

With notations as above, we have:

\[
W_{\mathfrak{m}}^{mp} \circ Tr_m^{mp(\mathfrak{d})} = \begin{cases}
\delta^{2m-k} Tr_m^{mp(\frac{m}{\mathfrak{d}})} & \text{if } p \nmid \mathfrak{d} \\
(\frac{\delta}{p})^{2m-k} Tr_m^{mp(\frac{mp^2}{\mathfrak{d}})} & \text{if } p|\mathfrak{d}
\end{cases}
\]
○ Recall that for $f \in S_{k,m}(\Gamma_0(mp))$, the trace is $\text{Tr}_m^{mp}(f) = \sum_{\gamma \in R_m^{mp}} f|_{k,m\gamma}$.

Definition

For a $f \in S_{k,m}(\Gamma_0(mp))$ and any divisor \varnothing of mp such that $\varnothing||mp$, we define the \varnothing-twisted trace map as

$$\text{Tr}_m^{mp}(\varnothing) := \text{Tr}_m^{mp} \circ \text{W}_{\varnothing}^{mp} : S_{k,m}(\Gamma_0(mp)) \to S_{k,m}(\Gamma_0(m))$$

$$f \mapsto \sum_{\gamma \in R_m^{mp}} (f|_{k,m\gamma} W_{\varnothing}^{mp})|_{k,m\gamma}.$$

Proposition (V. - 2021)

With notations as above, we have:

$$\text{W}_{m}^{mp} \circ \text{Tr}_m^{mp}(\varnothing) = \begin{cases}
\delta^{2m-k} \text{Tr}_m^{mp}(\frac{m}{\varnothing}) & \text{if } p \nmid \varnothing \\
(\frac{\varnothing}{p})^{2m-k} \text{Tr}_m^{mp}(\frac{mp^2}{\varnothing}) & \text{if } p|\varnothing.
\end{cases}$$

The above proposition implies

$$\text{Ker}(\text{Tr}_m^{mp}(mp)) = \text{Ker}(\text{Tr}_m^{mp}(p)).$$
Corollary

The space of \(p\)-newforms of level \(mp\), denoted by \(S_{k,m}^{p-new}(\Gamma_0(mp))\), is given by \(\text{Ker}(\mathbf{T}r_{mp}) \cap \text{Ker}(\mathbf{T}r_{mp}(p))\).
Corollary

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_0(mp))$, is given by

$$Ker(Tr_m^{mp}) \cap Ker(Tr_m^{mp(p)}).$$

Theorem (V. - 2021)

The map $D := Id - P^{k-2m}(Tr_m^{mp(p)})^2$ is bijective on $S_{k,m}(\Gamma_0(mp))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))$.
Corollary

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_0(mp))$, is given by

$$\text{Ker}(Tr_{mp}^{p}) \cap \text{Ker}(Tr_{mp}^{p(p)})$$

Theorem (V. - 2021)

The map $D := Id - P^{k-2m}(Tr_{mp}^{p(p)})^2$ is bijective on $S_{k,m}(\Gamma_0(mp))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))$.

Action on cusps

$$\begin{align*}
\text{Level } mp \\
\left(\begin{array}{c}
1 \\
1 \\
\end{array} \right) \\
W_{mp}^{mp} \\
\left(\begin{array}{c}
1 \\
\pi P \\
\end{array} \right)
\end{align*}$$
Corollary

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_0(mp))$, is given by $\text{Ker}(Tr_m^{mp}) \cap \text{Ker}(Tr_m^{mp(p)})$.

Theorem (V. - 2021)

The map $D := Id - P^{k-2m}(Tr_m^{mp(p)})^2$ is bijective on $S_{k,m}(\Gamma_0(mp))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))$.

Action on cusps

- **Level mp**
 - $(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix})$
 - $(\begin{smallmatrix} 1 P \\ \pi \end{smallmatrix})$

- **Level m**
 - $(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix})$
 - $(\begin{smallmatrix} 1 \pi \\ \pi \end{smallmatrix})$
Corollary

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_0(mp))$, is given by $Ker(Tr_{m}^{mp}) \cap Ker(Tr_{m}^{mp(p)})$.

Theorem (V. - 2021)

The map $D := Id - P^{k-2m}(Tr_{m}^{mp(p)})^2$ is bijective on $S_{k,m}(\Gamma_0(mp))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))$.

Action on cusps

\[
\begin{align*}
\text{Level } mp & \quad \text{Level } m & \quad \text{Level } mp \\
\begin{pmatrix} 1 \\ 1 \end{pmatrix} & \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
W_{mp}^{mp} & \quad W_{mp}^{mp} & \quad W_{mp}^{mp} \\
\begin{pmatrix} 1 \\ \pi P \end{pmatrix} & \quad \begin{pmatrix} 1 \\ \pi \end{pmatrix} & \quad \begin{pmatrix} 1 \\ P \end{pmatrix}
\end{align*}
\]
Corollary

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_0(mp))$, is given by $\text{Ker}(Tr_m^{mp}) \cap \text{Ker}(Tr_m^{mp(p)})$.

Theorem (V. - 2021)

The map $D := Id - P^{k-2m}(Tr_m^{mp(p)})^2$ is bijective on $S_{k,m}(\Gamma_0(mp))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))$.

Action on cusps
Corollary

The space of p-newforms of level mp, denoted by $S_{k,m}^{p-new}(\Gamma_0(mp))$, is given by $Ker(T_{mp}^m) \cap Ker(T_{mp}^{m(p)})$.

Theorem (V. - 2021)

The map $D := Id - P^{k-2m}(T_{mp}^{m(p)})^2$ is bijective on $S_{k,m}(\Gamma_0(mp))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(mp)) = S_{k,m}^{p-new}(\Gamma_0(mp)) \oplus S_{k,m}^{p-old}(\Gamma_0(mp))$.

Action on cusps

<table>
<thead>
<tr>
<th>Level mp</th>
<th>Level m</th>
<th>Level mp</th>
<th>Level m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(\begin{array}{c} 1 \ 1 \end{array}\right)$</td>
</tr>
<tr>
<td>W_{mp}^{mp}</td>
<td>W_{mp}^{mp}</td>
<td>W_{mp}^{mp}</td>
<td>W_{mp}^{mp}</td>
</tr>
<tr>
<td>$\left(\begin{array}{c} 1 \ \pi P \end{array}\right)$</td>
<td>$\left(\begin{array}{c} 1 \ \pi \end{array}\right)$</td>
<td>$\left(\begin{array}{c} 1 \ P \end{array}\right)$</td>
<td>$\left(\begin{array}{c} 1 \ 1 \end{array}\right)$</td>
</tr>
</tbody>
</table>

Proposition (V. - 2020)

The involution W_{mp}^{mp} and the operator U_p commute on the space of p-newforms of level mp.
Lemma (V. - 2021)

Let $f \in S_{k,m}(\Gamma_0(p))$ be a p-newform of level p. Then, $D_1(f), D_m(f) \in S_{k,m}(\Gamma_0(mp))$ are p-newforms of level mp.
<table>
<thead>
<tr>
<th>Lemma (V. - 2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $f \in S_{k,m}(\Gamma_0(p))$ be a p-newform of level p. Then, $D_1(f), D_m(f) \in S_{k,m}(\Gamma_0(mp))$ are p-newforms of level mp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition (V. 2021)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $f \in M_{k,m}(\Gamma_0(mp))$ with rational u-series coefficients, where $(m, p) = (1)$ and p is prime. Then, f is a p-adic Drinfeld modular form for $\Gamma_0(m)$.</td>
</tr>
</tbody>
</table>
Lemma (V. - 2021)

Let \(f \in S_{k,m}(\Gamma_0(p)) \) be a \(p \)-newform of level \(p \). Then, \(D_1(f), D_m(f) \in S_{k,m}(\Gamma_0(mp)) \) are \(p \)-newforms of level \(mp \).

Proposition (V. 2021)

Let \(f \in M_{k,m}(\Gamma_0(mp)) \) with rational \(u \)-series coefficients, where \((m, p) = (1) \) and \(p \) is prime. Then, \(f \) is a \(p \)-adic Drinfeld modular form for \(\Gamma_0(m) \).

\[
\begin{align*}
\circ f &= \sum_{i \geq 0} a_i u(z)^i, \quad a_i \in A. \\
\circ v_p(f) &= \inf_i v_p(a_i).
\end{align*}
\]
Lemma (V. - 2021)

Let \(f \in S_{k,m}(\Gamma_0(p)) \) be a \(p \)-newform of level \(p \). Then, \(D_1(f), D_m(f) \in S_{k,m}(\Gamma_0(mp)) \) are \(p \)-newforms of level \(mp \).

Proposition (V. 2021)

Let \(f \in M_{k,m}(\Gamma_0(mp)) \) with rational \(u \)-series coefficients, where \((m,p) = (1) \) and \(p \) is prime. Then, \(f \) is a \(p \)-adic Drinfeld modular form for \(\Gamma_0(m) \).

- \(f = \sum_{i \geq 0} a_i u(z)^i, \ a_i \in A. \)
- \(v_p(f) = \inf_i v_p(a_i). \)
- We say that \(f \) is a \(p \)-adic Drinfeld modular form for \(\Gamma_0(m) \) if it exists a sequence \(\{f_i\} \) of Drinfeld modular forms for \(\Gamma_0(m) \) verifying \(v_p(f_i - f) \to \infty \) as \(i \to \infty \).

Thanks for your attention!