Graph limits and Markov spaces

László Lovász
Alfréd Rényi Institute of Mathematics, Budapest
and
Eötvös Loránd University, Budapest
What is a limit theory?

$G_1, G_2, ..., G_n, ...$ more and more similar. Template for large G_n?
Plan

Convergence and limit of finite structures: a bit of history
Left and right convergence, limits
- Dense graph sequences and graphons
- Bounded-degree graph sequences and graphings
What happens inbetween?
- Markov spaces and double measure spaces
Why limits?

Early contructions

- Continuous geometries von Neumann 1936
- Subgraph counts in the limit Erdős-LL-Spencer 1979
- Continuous partition lattices Björner 1986
- Continuous number fields, matroids,... Björner-LL 1987
- Convergence of metric spaces Gromov 1989
Graph Limits

• Scaling limits in statistical physics

• Planar/bounded degree graphs
 Benjamini, Schramm 2001

• Dense graphs
 Borgs, Chayes, LL, T. Sós, Szegedy, Vesztergombi 2003

• First order convergence
 Nesetril, Ossona de Mendez 2010
More limits

• Limits of partially ordered sets Janson 2011
• Limits of permutations
 Hoppen, Kohayakawa, Moreira, Ráth and Menezes Sampaio 2011
• Limits of functions on Abelian groups
 Szegedy 2012, Green, Tao, Ziegler 2011
• Limits of dense hypergraphs Elek, Szegedy 2012
„more and more similar”?

Complete graphs

Cycles
„...more and more similar”?
„...more and more similar”?

Penrose tilings
„...more and more similar”?

Erdős-Rényi random graphs $G(n, 1/2)$ ($n \to \infty$)
What is a limit theory?

$G_1, G_2, ..., G_n, ...$ more and more similar. Template for large G_n?

- notions of convergence
- construction of limit objects
Left and right convergence

\[F \rightarrow G \rightarrow H \]

- subgraph counts
- neighborhood statistics
- degree distribution
- eigenvalues
- statistical physics models
- chromatic polynomial
- maximum cut
- regularity partitions
- eigenvectors

Pixel pictures

0 0 1 0 0 1 1 0 0 0 1 0 0 1
0 0 1 0 1 0 1 0 0 0 0 0 1 0
1 1 0 1 0 1 1 1 1 0 1 0 1 1
0 0 1 0 1 0 1 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0 0 0 1 0 0 1
1 0 1 0 1 0 1 1 0 1 1 1 0 1
1 1 1 1 1 1 0 1 0 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 0 1 1
0 0 1 1 0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 1 1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 0 1 0 1 1 1
0 0 0 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 1 0 1
1 0 1 0 1 1 0 1 0 0 1 0 1 0
Limits of dense graph sequences

A random graph with 100 nodes and 2500 edges

1/2
Limits of dense graph sequences

Randomly grown uniform attachment graph with 200 nodes

$1 - \max(x, y)$
Limits of dense graph sequences

Limit objects: graphons

\[W : [0,1]^2 \rightarrow [0,1], \]

symmetric, measurable

Extending graph theory to graphons

Connectivity, matchings, spectra, automorphisms, ...
Dense graphs: left-convergence

Density of F in $G = \text{prob that random map } V(F) \to V(G)$ preserves edges: \[t(F, G) = \frac{\# \text{homomorphisms } F \to G}{|V(G)|^{|V(F)|}} \]

(G_1, G_2, \ldots) is left-convergent, if $(t(F, G_1), t(F, G_2), \ldots)$ is convergent $\forall F$.
Dense graphs: left-convergence to the limit

Density of graph F in graphon W: $t(F, W) = \int_{[0,1]^{V(F)}} \prod_{ij \in E(F)} W(x_i, x_j) \, dx$

$G_n \to W$, if $t(F, G_n) \to t(F, W)$ for $\forall F$.

Erdős-Rényi random graph: $G(n, \frac{1}{2}) \to W \equiv \frac{1}{2}$
Dense graphs (main facts)

For every left-convergent graph sequence (G_n) there is a graphon W such that $G_n \rightarrow W$.

For every graphon W there is a graph sequence (G_n) such that $G_n \rightarrow W$.

The limit graphon is essentially unique (up to measure preserving transformations and changes of measure 0).
Dense graphs: right-convergence

\[F \rightarrow G \rightarrow H \]

\[Q_q(G) = \{G/P : P \text{ a } q\text{-partition of } V(G)\} \]

\[G_1, G_2, \ldots \text{ is (left)-convergent iff} \]

\[\forall q \ Q_q(G_n) \text{ (normalized) is convergent in Hausdorff distance} \]
Local convergence of bounded-degree graphs

\[\frac{\text{# homomorphisms } F \to G_n}{|V(G_n)|} \text{ converges for all connected } F \]

Limit objects: involution-invariant distributions on countable rooted graphs

Soficity: Aldous-Lyons Conjecture
Gromov Problem: \(\forall \text{ countable group is sofic} \)

Benjamini - Schramm

Local convergence of bounded-degree graphs

Limit object: graphing \equiv Borel graph on $[0,1]$ with bounded degree

with “double counting” condition

$$\int_{A} \deg(x, B) \, dx = \int_{B} \deg(x, A) \, dx$$

Extending graph theory to graphings
Matchings, flows, expansion, edge-coloring,...
Intermediate densities

Current focus of research

Continuum node set

Borgs, Chayes, Cohn, Zhao, Frenkel, Backhausz, Kunszenti-Kovács, LL, Szegedy

random node + random edge \rightarrow symm probability measure on $[0,1]^2$
Markov spaces

Markov space: \((J, \mathcal{A}, \eta)\), where \((J, \mathcal{A})\) is a (Borel) sigma-algebra, \(\eta\) is a (symmetric) probability measure on \((J^2, \mathcal{A}^2)\) with equal marginals;

Stationary distribution: marginals \(\pi(X) = \eta(X \times J) = \eta(J \times X)\)

For every Markov space there is a reversible Markov chain with stationary distribution \(\pi\) and ergodic measure \(\eta\), and vice versa.
Double measure spaces

\((J, \mathcal{A}, \eta, \lambda)\), where \((J, \mathcal{A}, \lambda)\) is a probability space, and \((J, \mathcal{A}, \eta)\) is a Markov space.

\(\pi(X) = \lambda(X)\) generalizes regular graphs

Extending graph theory to Markov spaces
Flows, expansion, spectra, random walks,…
Flow theory: circulation

\[\sum_{j} f(ij) = \sum_{j} f(ji) \]

flow condition

circulation: measure on \([0,1]^2\) with equal marginal

Hoffman Circulation Theorem:

For \(\forall \) two measures \(\varphi, \psi \) on \([0,1]^2\),

\(\exists \) circulation \(\alpha \) such that \(\varphi \leq \alpha \leq \psi \),

iff \(\varphi \leq \psi \) and \(\varphi(X \times X^c) \leq \psi(X^c \times X) \)
for every \(X \subseteq [0,1] \).
Convergence to Markov spaces

left-convergence

Lyons
Borgs, Chayes, Cohn, Zhao
Frenkel

right-convergence

Kunészenti-Kovács, LL, Szegedy
Backhausz, Szegedy

How to define subgraph densities in Markov spaces?
What are graph limits good for?

• Existence of optima

• Large deviation theory for random graphs

• Templates for solutions of extremal graph problems (finite forcing)

• Local extremal graph theory
Existence of optima

Minimize $x^3 - 6x$ over $x \geq 0$.

minimum is not attained in rationals

\Rightarrow real numbers are useful
Existence of optima

Minimize density of 4-cycles in a graph with edge-density \(\frac{1}{2} \).

always >1/16, arbitrarily close for random graphs

minimum is not attained among graphs \(\Rightarrow \) graph limits are useful

Minimum is attained for constant \(\frac{1}{2} \) graphon only.
Graphon W is finitely forcible: $\exists F_1, \ldots, F_m, \alpha_1, \ldots, \alpha_m$:

\[
\begin{align*}
t(F_1, W) &= \alpha_1 \\
\vdots \\
t(F_m, W) &= \alpha_m
\end{align*}
\]

$\Rightarrow W$ is determined (up to...)
Finitely forcible graphons

constant p functions \hspace{1cm} Chung-Graham-Wilson 1989

$t(K_2, W) = p$, \hspace{0.5cm} $t(C_4, W) = p^4$

complete bipartite graphs \hspace{1cm} Mantel - Turán

$t(K_2, W) = \frac{1}{2}$, \hspace{0.5cm} $t(K_3, W) = 0$

Finitely forcible graphons \hspace{0.5cm} \approx \hspace{0.5cm} templates for optimal graphs

in extremal graph theory \hspace{1cm} ?
Finitely forcible graphons

stepfunctions

LL-T. Sós 2008

LL-Szegedy 2011
Finitely forcible graphons

Finitely forcible: Baire category I

Not finitely forcible: Baire category II

\[W(x, y) = \begin{cases} \frac{x + y}{2} \\ xy \end{cases} \]
Finitely forcible graphons

Several conjectures

Extremal graph \Rightarrow Finitely forcible \Rightarrow Nice properties
(polynomial size Szemerédi partitions, ...)

Several conjectures \times
Finitely forcible graphons

Kral, Cooper, Glebov, Grzesik, Kaiser, Klimosova, L.M.Lovász, Martins, Noel, Sosnovec 2013-2020

arbitrary graphon finitely forcible
Thank you for your attention!
Dense graphs (further things to define)

• distance of graphs/graphons in which convergence \Leftrightarrow Cauchy

• metric space of graphons (compact)

• regularity partitions of graphons \rightarrow algorithmic theory of graphons

• spectra of graphons

• extremal graphon theory...
Flow of value ω: measure φ on $[0,1]^2$

\[
\varphi^1 - \varphi^2 = \omega (\delta_t - \delta_s)
\]

Max-Flow-Min-Cut etc. generalizes rather straightforwardly.
Decomposition of flows into paths

\[B = \{(s, x_1, \ldots, x_r, t) : x_i \in [0,1]\} : \text{s - t paths} \]

\[\tau : \text{measure on } B \]

\[\hat{\tau}(S) = \int_B |S \cap E(P)| \, d\tau(P) : \text{measure on } [0,1]^2 \]

For every acyclic s-t flow \(\varphi \geq 0 \) there is a \(\tau \) with \(\hat{\tau} = \varphi \).

no circulation \(\alpha \) with \(0 \leq \alpha \leq \varphi \)