On the Connectivity of Branch Loci of Spaces of Curves

Milagros Izquierdo

Applied Combinatorial Geometric Topology
8ECM, June 24, 2021

Joint work with A. Costa and other (important) people
Milagros Izquierdo

On the Connectivity of Branch Loci of Spaces of Curves
Given an orientable, closed surface X of genus $g \geq 2$ The equivalence:

$$(X, \mathcal{M}(X), \text{complex atlas}) \ (\mathcal{M}(X) = \langle x, y \rangle, \ p(x, y) = 0, \text{the field of meromorphic functions on } X)$$

$X \cong \frac{\mathbb{H}}{\Delta}$, with Δ a (cocompact) Fuchsian group

Δ discrete subgroup of $\text{PSL}(2, \mathbb{R})$

$$(X, \mathcal{M}(X), \text{complex curve}) \ (\mathcal{M}(X) = \mathbb{C}[x, y]/p(x, y), \text{the field of rational functions on } X)$$

$$(Y, \text{dianalytic atlas}) \cong (X/\sigma, \sigma \text{ class of anticonformal involution}) \cong \text{real curve } (Y, \text{birational structure}). \ Y \cong \frac{\mathbb{H}}{\Delta}$, with $\hat{\Delta}$ an NEC group

The ovals of the curve Y are the boundary components of the surface X/σ, the orientability is the one of X/σ, the genus (is the genus): topological type t
(X, complex atlas) \cong \mathbb{H}/\Delta, \text{ with } \Delta \text{ a (cocompact) Fuchsian group}

Surface Fuchsian Group \(\Gamma_g = \langle a_1, b_1, \ldots, a_g, b_g \mid \prod [a_i, b_i] = 1 \rangle \)

▶ Teichmüller space \(\mathcal{T}_g \), space of geometries on a surface of genus \(g \)

\(\mathcal{T}_g = \{ \sigma : \Gamma_0 \to PSL(2, \mathbb{R}) \mid \sigma \text{ injective, } \sigma(\Gamma_0) \text{ discrete} \} / PSL(2, \mathbb{R}) \)

A Riemann surface with prescribed geometry is given by a marked polygon (and all its conjugate by a hyperbolic transformation) in the hyperbolic plane, or the space of conjugacy classes of Fuchsian groups isomorphic to the abstract group \(\Gamma_0 = \langle a_1, b_1, \ldots, a_g, b_g; a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_g b_g a_g^{-1} b_g^{-1} = 1 \rangle \).

▶ Moduli space \(\mathcal{M}_g \), space (orbifold) of conformal structures on a surface of genus \(g \)

▶ Mapping Class Group (Teichmüller Modular Group)

\(\mathcal{M}_g^+ = Diff^+(X) / Diff_0(X) = Out(\Gamma_g) \)

▶ Orbifold Universal Covering \(\mathcal{M}_g = \mathcal{T}_g / \mathcal{M}_g^+ \)

\(\mathcal{B}_g \textbf{ Branch Locus} = \textbf{Singular Locus of } \mathcal{M}_g \textbf{ as orbifold} \) (Not the singular set of \(\mathcal{M}_{2,3} \) as algebraic variety, A. Costa- A. Porto for a proof with Fuchsian groups)
Nielsen Realization Theorem (Abikoff 1980, Macbeath for NEC groups)

\[B_g = \{ X \in \mathcal{M}_g \mid \text{Aut}(X) \neq 1 \} \]

(\(B_2 \) : surfaces with more automorphisms than the hyperelliptic involution)

\(g = 1 \) Euclidean case: \(\mathcal{T}_1 = \mathbb{H}, \mathcal{M}_1 = \text{PSL}(2, \mathbb{Z}), B_1 = \{ i, e^{i\pi/3} \} \), \(\mathcal{M}_1 \) hyperbolic triangle with a vertex at \(\infty \), the nodal curve \(y^2 = x^3 \).

Considering \((X, \text{dianalytic atlas, top. type } t) \cong \mathbb{H}/\hat{\Delta}, \) with \(\hat{\Delta} \) an NEC group \(\mathcal{T}_t^K \) and \(\mathcal{M}_t^K \) the Teichmüller and moduli space of Klein surfaces of topological type \(t \).

\[\mathcal{M}_t^K = \mathcal{T}_t^K / M(\hat{\Delta}), \quad M(\hat{\Delta}) = \text{Out}(\hat{\Delta}). \]
Branch locus \(B_t^K \)

Studies of branch locus and moduli spaces:
For \(g = 1 \) Schwarz
For \(g = 2 \) Bolza (1887, moduli of automorphic functions)
For hyperbolic surfaces Harvey, Natanzon, Macbeath.
Deligne-Mumford Completion (going to ∞ in \mathcal{M}_g)

Curves whose singularities are ordinary double points (nodes), all of whose irreducible components isomorphic to \mathbb{P}^1 (or $\hat{\mathbb{C}}$), meet the other irreducible components in at least 3 nodes: stable curves

$\hat{\mathcal{M}}_g = \mathcal{M}_g \cup \{\text{stable curves}\}$

(deforming by varying the coefficients or roots)

Geometrically: Riemann surfaces with a geodesic multicurve pinched to length 0

(deforming by varying the lengths of a system of curves)

Consider the completion $\hat{\mathcal{B}}_g$ of \mathcal{B}_g in $\hat{\mathcal{M}}_g$
Wish: If B_g, B^K_t, \hat{B}_g connected one can deform a curve with symmetry to another curve with symmetry along a path of curves, all they with symmetry, maybe pinching some multicurve.

1. The branch loci B_g of moduli spaces of hyperbolic Riemann surfaces are disconnected for all genera with the exception of genera 3, 4, 7, 13, 17, 19 and 59.
 In genus 2 Wiman’s curve (of type I) is isolated.

2. It contains several connected components. E.g. B_g contains isolated strata formed by p-gonal RS for genera a multiple g of $(p-1)/2$, at least $2(p-1)/2$
 Question: How much does the no. of connected comp. grow?

3. Considering RS as Klein surfaces, $B^K_{(g,+),0}$ is connected!
 Bartolini-Costa-I-Porto 2010 (RACSAM)

4. $B^K_{(g,+),k}$ is connected (orientable Klein surfaces) Costa-I-Porto 2015 (Geom. Dedic.)

5. $B^K_{(g,-),0}$ is connected ($g = 4, 5$ Bujalance-Etayo-Martínez-Szpietowski 2014)
 In general? (Costa-I-Porto 2021).
6 Considering $\hat{\mathcal{M}}_g$,

- Question 1: Is $\hat{\mathcal{B}}_g$ connected?
- Question 2: Is the locus of stable p-gonal curves connected, p odd prime?

7 The hyperelliptic locus is connected (Seppälä 1982), the p-gonal locus is in general disconnected, each connected comp. associated to a partition of $0 \mod p$ (González-Diez 1995, Buser-Silhol-Seppälä 1995)

8 The locus of hyperelliptic non-orientable Klein surface with one boundary component is disconnected. It is connected for the corresponding orientable surfaces.
 Costa-I-Porto 2017 (Inter. J. Math.)

9 The completion of the trigonal locus is connected
 Costa-I-Parlier 2014 (Rev. Mat. Complut.)

10 $\hat{\mathcal{B}}_g$ contains isolated strata of dim.1 for genera $g = p - 1, p \geq 11$. These strata consists of p-gonal curves
 Costa-I-Parlier 2014 (Rev. Mat. Complut.)

11 The locus of principally polarized abelian varieties (ppav) admitting involutions is connected
 Reyes-Carocca - Rodríguez 2018
Conformal Geometry and Low Dimensional Manifolds

A conference in Honour of Antonio F. Costa
27 June - 1 July 2022. UNED, Ávila
Fuchsian and NEC Groups

- Δ (cocompact) discrete subgroup of $PSL(2, \mathbb{R})$
- A (compact) Riemann (surface) orbifold of genus $g \geq 2$ \quad $X = \frac{\mathbb{H}}{\Delta}$
- Δ has presentation:
 - generators: $x_1, \ldots, x_r, a_1, b_1, \ldots, a_h, b_h$
 - relations: $x_i^{m_i}, i = 1 : r, x_1 \ldots x_r a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_h b_h a_h^{-1} b_h^{-1}$
- $X = \frac{\mathbb{H}}{\Delta}$: orbifold with r cone points and underlying surface of genus g
- Algebraic structure of Δ and geometric structure of X are determined by the signature $s(\Delta) = (h; m_1, \ldots, m_r)$
- NEC group Δ (hyperbolic silvered 2-orbifolds)
 - extra generators: $e_1, \ldots, e_k, c_{i,j}, 1 \leq i \leq k, 1 \leq j \leq r_i + 1$
 - extra relations: $(c_{i,j-1} c_{i,j})^{n_{i,j}}, j = 1, \ldots, r_i, e_i^{-1} c_{i,r_i} e_i^{-1} c_{i,0}, i = 1, \ldots, k$
 - long relation: either $x_1 \ldots x_r e_1 \ldots e_k a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_h b_h a_h^{-1} b_h^{-1}$
 or $x_1 \ldots x_r e_1 \ldots e_k d_1^2 \ldots d_h^2$
 - $s(\Delta) = (h; \pm; [m_1, \ldots, m_r]; \{(n_{1,1}, \ldots, n_{1,r_1}), \ldots, (n_k, 1, \ldots, n_k, r_k)\})$.

Singerman 1970-1974
Fundamental polygon

- Area of Δ: area of a fundamental region P
 \[\mu(\Delta) = 2\pi(2h - 2 + \sum_{i=1}^{r}(1 - \frac{1}{m_i})) \]

- For NEC group
 \[\mu(\Delta) = 2\pi(\varepsilon h - 2 + k + \sum_{i=1}^{r}(1 - \frac{1}{m_i}) + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{r_i}(1 - \frac{1}{n_{i,j}})) \]

- X hyperbolic equivalent to P/\langlepairing\rangle

- Every Riemann/Klein orbifold is diconformally equiv. to a Riemann/Klein surface X (uniformized by a surface group Γ_g, $\Gamma_{(g,\pm,k)}$) Moore 197X, Bujalance 1982, (Armstrong 1984 for structures associated to more general discontinuos groups)
Automorphisms and Morphisms of RS

G finite group of automorphisms of $X_g = \mathbb{H}/\Gamma$, Γ a surface group if there exist Δ Fuchsian/NEC group and epimorphism $\theta : \Delta \to G$ with $\text{Ker}(\theta) = \Gamma$

θ is the monodromy of the (regular) covering $f : \mathbb{H}/\Gamma \to \mathbb{H}/\Delta$

Δ: lifting to \mathbb{H} of G

An automorphism of X will fix the class of the uniformizing Fuchsian/NEC group
A morphism \(f : X = \mathbb{H}/\Lambda \rightarrow Y = \mathbb{H}/\Delta \), given by the group inclusion \(i : \Lambda \rightarrow \Delta \)
Covering \(f \) determined by monodromy \(\theta : \Delta \rightarrow \Sigma \mid_{\Delta : \Lambda} \), \(\Lambda \mid_{\Delta : \Lambda} = \theta^{-1}(STb(1)) \)
(symbol \(\Longleftrightarrow \) \(\Lambda \)-coset \(\Longleftrightarrow \) sheet for \(f \))

Theorem (Singerman 1971) \(\Lambda \) (and so \(i \)) determined \(\theta \) (and \(\Delta \)): If
\(s(\Delta) = (h; m_1, \ldots, m_r) \), then
\(s(\Lambda) = (h'; m_{11}, \ldots, m_{1s_1}, \ldots, m'_{r1}, \ldots, m'_{rs_r}) \) iff
\(\theta : \Delta \rightarrow \Sigma \mid_{\Delta : \Lambda} \) s.t.

i) Riemann-Hurwitz \(\frac{\mu(\Lambda)}{\mu(\Delta)} = |\Delta : \Lambda| \)

ii) \(\theta(x_i) \) product of \(s_i \) cycles each of length \(\frac{m_i}{m'_{i1}}, \ldots, \frac{m_i}{m'_{is_i}} \)

Analogous result for NEC group & Klein surfaces Singerman 1974, Hoare 1990, Pride 1990

\[\text{locally a cycle of } \theta(x_i) \]
\[\text{In case of automorphism groups } G, \theta : \Delta \rightarrow G \leq \mathbb{Z} \]
\[\theta(x_i) \text{ of order } m_i \]
Example: Surfaces of genus 2 with 8 automorphisms. They admit an action of D_8 with monodromy \(\Theta: \Delta(0, 2, 2, 2, 4) \rightarrow D_8 \)

\[
\Theta(x_1) = \alpha = (1, 3, 5, 7)(2, 4, 6, 8), \\
\Theta(x_2) = \delta = (1, 2)(4, 7)(3, 8)(6, 5), \\
\Theta(x_3) = s\alpha = (1, 4)(2, 3)(5, 8)(6, 7)
\]

Of course \(\Theta(x_4) = \alpha^2 = (1, 5)(2, 6)(3, 7)(4, 8) \).

No singular pts for order 4.

For one of order 2:

\(e^1 \), \(e^2 \), \(e^3 \) and \(e^5 \).

The area is $2a^8(1/4) = 4a$, so genus is 2. Area $= 4a(q-1)$.

Milagros Izquierdo

On the Connectivity of Branch Loci of Spaces of Curves
p-gonal Riemann Surfaces

- A Riemann surface X is called p-gonal if it admits a morphism of degree p on the Riemann sphere.
- X is called cyclic p-gonal when X has an automorphism φ of order p such that $X/\langle \varphi \rangle = \hat{\mathbb{C}}$.
- Case $p = 2$: X hyperelliptic R.S.
- A Riemann surface X is called elliptic-p-gonal if it admits a morphism of degree p on a torus.
- X is called cyclic elliptic-p-gonal when the morphism is a regular covering.
- **Severi-Castelnuovo inequality**: A p-gonal morphism of X is unique if the genus of $X \geq (p - 1)^2$.
- An elliptic-p-gonal morphism of X is unique if the genus of $X \geq 2p + (p - 1)^2$.
Teichmüller and Moduli Spaces

Δ abstract Fuchsian group \(s(Δ) = (h; m_1, \ldots, m_r) \)

\[\mathcal{T}_Δ = \{ \sigma : Δ \rightarrow PSL(2, \mathbb{R}) \mid \sigma \text{injective, } \sigma(Δ) \text{ discrete } \} / PSL(2, \mathbb{R}) \]

Teichmüller space \(\mathcal{T}_Δ \) has a complex structure of dim \(3h - 3 + r \), diffeomorphic to a ball of dim \(6h - 6 + 2r \).

If \(Λ \) subgroup of \(Δ \) \((i : Λ \rightarrow Δ) \Rightarrow i_* : \mathcal{T}_Δ \rightarrow \mathcal{T}_Λ \) embedding

\(Γ_g \) surface Fuchsian group \(Γ_g \leq Δ \) \(\mathcal{T}_Δ \subset \mathcal{T}_{Γ_g} = \mathcal{T}_g \)

\(G \) finite group \(\mathcal{T}_g^G = \{ [σ] \in \mathcal{T}_g \mid g[σ] = [σ] \forall g \in G \} \neq \emptyset \)

\(\mathcal{T}_g^G \): surfaces with \(G \) as a group of automorphisms.

Mapping class group \(M^+(Δ) = Out(Δ) = \frac{Diff(\mathbb{H}/Δ)}{Diff_0(\mathbb{H}/Δ)} \)

\(Δ = π_1(\mathbb{H}/Δ) \) as orbifold

\(M^+(Δ) \) acts properly discontinuously on \(\mathcal{T}_Δ \) \(\mathcal{M}_Δ = \mathcal{T}_Δ / M^+(Δ) \)
We can give coordinates to this space by considering decomposition in **pairs of pants**: **Fenchel-Nielsen Coordinates**.

A **pairs of pants** is a surface with boundary obtained by taking two identical copies of a right-angle hexagon and gluing 3 of the sides. A pair of pants is homeomorphic to a sphere with three holes, the boundaries are totally geodesic (any point on the boundary has a neighbourhood isometric to a half-disc). Given three positive real numbers \(l_1, l_2, l_3 \), there is a pair of pants whose boundaries have lengths \(l_1, l_2, l_3 \) respectively.

Any hyperbolic surface \(S_g \) admits a decomposition in \(2g - 2 \) pairs of pants with \(3g - 3 \) boundaries (there are many such decompositions).

So we have \(3g - 3 \) parameters that are the lengths of the boundaries in the pant decompositions \((l_1, l_2, \ldots, l_{3g-3}, \ldots)\). The remaining \(3g - 3 \) parameters \(\theta_1, \ldots, \theta_{3g-3} \) are the **twist parameters**, each one giving the angle along which two pairs of pants are glued together along the common boundary.

\[
(l_1, l_2, \ldots, l_{3g-3}, \theta_1, \ldots, \theta_{3g-3})
\]

(\textcolor{red}{\text{Teichmüller}}) In fact the map assigning to each class of triples the Fenchel-Nielsen parameters is a homeomorphism \(\mathcal{T}_g \rightarrow \mathbb{R}^{6g-6} \).

This map is not only a homeomorphism but also a conformal map \(\mathcal{T}_g \rightarrow \mathbb{C}^{3g-3} \). (\textcolor{red}{\text{Beltrami, Ahlfors}}).
Surfaces with automorphisms: **Branch Locus**

Consider a marked surface \(\sigma(X) \in \mathcal{T}_g \) and \(\beta \in \mathcal{M}_g^+ \), we have

\[
\mathbb{H}/\Delta_g = X \xrightarrow{\sigma} \sigma(X) \\
\downarrow \quad \beta \ast (X) \xrightarrow{\sigma} \sigma \beta (X)
\]

\(\beta[\sigma] = [\sigma] \Leftrightarrow \gamma \in PSL(2, \mathbb{R}), \quad \sigma(\Gamma_g) = \gamma^{-1} \sigma \beta(\Gamma_g) \gamma \)

\(\gamma \) induces an automorphism of \([\sigma(X)]\)

\[
Stb_{\mathcal{M}_g} [\sigma] = \{ \beta \in \mathcal{M}_g | \beta[\sigma] = [\sigma] \} = Aut([\sigma(X)])
\]

\(G = Aut(X) \) finite, determines a conjugacy class of finite subgroups of \(\mathcal{M}_g \), the **symmetry** of \(X \)

\(X_g, Y_g \) equisymmetric if \(Aut(X_g) \) conjugate to \(Aut(Y_g) \)

(\(Aut(X_g) \): **full automorphism group**)

Singerman's list of non-maximal signatures.
Equisymmetric Stratification

Action: $\theta : \Delta \to Aut(X_g) = G$, $\ker(\theta) = \Gamma_g$

$Aut(X_g) = G$ conjugate $Aut(Y_g)$ iff $w \in Aut(G)$, $h \in Diff^+(X)$

$\epsilon, \epsilon' : G \to Diff^+(X)$, $\epsilon'(g) = h\epsilon w(g)h^{-1}$

Two (surface) monodromies $\theta_1, \theta_2 : \Delta \to G$ topologically equiv. actions of G

$\begin{align*}
\Delta & \xrightarrow{\theta_1} G \\
\beta \in Aut(\Delta) & \downarrow \quad \downarrow \quad w \in Aut(G) \\
\Delta & \xrightarrow{\theta_2} G
\end{align*}$

θ_1, θ_2 equiv under $B(\Delta) \times Aut(G)$, $B(\Delta)$ braid group

Broughton (1990): Equisymmetric Stratification

$\mathcal{M}_g^{G, \theta} = \{X \in \mathcal{M}_g \mid \text{symmetry type of } X \text{ is } G\}$

$\overline{\mathcal{M}}_g^{G, \theta} = \{X \in \mathcal{M}_g \mid \text{symmetry type of } X \text{ contains } G\}$

$\mathcal{M}_g^{G, \theta}$ smooth, connected, locally closed alg. var. of \mathcal{M}_g, dense in $\overline{\mathcal{M}}_g^{G, \theta}$

$B_g = \bigcup \overline{\mathcal{M}}_g^{G, \theta}$

Costa-I (2008) $B_g = \bigcup \overline{\mathcal{M}}_g^{Cp, \theta}$ (Cornalba 1987 and 2008)
Connectedness, we are interested in \(Y \in \overline{\mathcal{M}}_{g, \theta_1} \cap \overline{\mathcal{M}}_{g, \theta_2} \)

Finding \(\theta : \Delta \to G = \text{Aut}(Y) \) extends both \(\theta_1 : \Delta_1 \to G_1 \) and \(\theta_2 : \Delta_2 \to G_2 \) with \(\text{Ker}(\theta) = \text{Ker}(\theta_1) = \text{Ker}(\theta_2) = \Gamma_g \)

Geometrically
\[
\begin{array}{c}
\mathbb{H}/\Delta_1 \\
\downarrow \quad f_{\theta_1} \\
\mathbb{H}/\Delta \\
\downarrow \quad f_{\theta} \\
\mathbb{H}/\Delta_2 \\
\downarrow \quad f_{\theta_2} \\
G_1 = C_{p_1} \text{ and } G_2 = C_{p_2}
\end{array}
\]

Corresponding to groups:
\[
\begin{array}{c}
\Delta_1 \\
\downarrow \quad \Delta \\
\downarrow \quad \Delta_2 \\
\downarrow \quad C_{p_1} \\
\downarrow \quad G \\
\downarrow \quad C_{p_2}
\end{array}
\]

We need to look at maximal actions of \(C_p \) for isolated strata
Some Results

- Kulkarni (1991). Existence of isolated points in B_g iff $g = 2$ or $2g+1$ a prime ≥ 11.
 Isolated points are given by actions $\theta : \Delta(0; p, p, p) \to C_p$, $p = 2g + 1$.
 The actions of C_7 in M_3 extend to actions of C_{14} or $PSL(2, 7)$.
- Bartolini-I (2009): $M_{C_2, \theta}$ and $M_{C_3, \theta'}$ belong to the same connected component of B_g.
 All the closed strata induced by actions of C_2 or C_3 intersect the closed stratum formed by surfaces X_g admitting an automorphism of order 2 with quotient Riemann surface of genus highest possible: $\frac{g}{2}$ for even g and $\frac{g+1}{2}$ for odd g.
- Costa-I (2011): B_g contains isolated strata of dimension 1 iff $g+1$ is a prime ≥ 11.
 The isolated strata are given by actions:
 $\theta_h : \Delta(0; p, p, p, p) \to C_p : \theta_h(x_1) = a, \theta_h(x_2) = a^i, \theta_h(x_3) = a^j$
 $i \neq 1, p - 1, j \neq 1, p - 1, i, p - i, p - 1 - i - j \neq 1, i, j$.
 These actions are maximal and the strata contain no curve with more symmetry.
- **Branch loci in genera four, seven, thirteen, seventeen, nineteen and fifty-nine are connected.**
 GAP-machinery !!
- Bartolini-Costa-I (2013). These are the only genera with connected branch locus.
Actions given isolated stratum of maximal dimension

- $g = 60$, action $\theta : \Delta(0; 5^{32}) \to C_5$:
 \[
 \theta(x_1) = \cdots = \theta(x_{19}) = \alpha, \quad \theta(x_{20}) = \cdots = \theta(x_{24}) = \alpha^2, \quad \theta(x_{25}) = \alpha^3, \quad \theta(x_{26}) = \cdots = \theta(x_{32}) = \alpha^4.
 \]

- $g = 61$, action $\theta : \Delta(1; 5^{30}) \to C_5$:
 \[
 \theta(a) = \theta(b) = 1, \quad \theta(x_1) = \cdots = \theta(x_{23}) = \alpha, \quad \theta(x_{24}) = \cdots = \theta(x_{28}) = \alpha^2, \quad \theta(x_{29}) = \alpha^3, \quad \theta(x_{30}) = \alpha^4.
 \]

- $g = 63$, action $\theta : \Delta(0; 7^{23}) \to C_7$:
 \[
 \theta(x_1) = \cdots = \theta(x_{14}) = \alpha, \quad \theta(x_{15}) = \cdots = \theta(x_{19}) = \alpha^5, \quad \theta(x_{20}) = \alpha^4, \quad \theta(x_{21}) = \cdots = \theta(x_{23}) = \alpha^2.
 \]

- $g = 67$, action $\theta : \Delta(1; 7^{22}) \to C_7$:
 \[
 \theta(a) = \theta(b) = 1, \quad \theta(x_1) = \cdots = \theta(x_{17}) = \alpha, \quad \theta(x_{18}) = \cdots = \theta(x_{20}) = \alpha^6, \quad \theta(x_{21}) = \alpha^3, \quad \theta(x_{22}) = \alpha^4.
 \]

- $g = 71$, action $\theta : \Delta(2; 7^{21}) \to C_7$:
 \[
 \theta(a_i) = \theta(b_i) = 1, \quad i = 1, 2, \quad \theta(x_1) = \cdots = \theta(x_{13}) = \alpha, \quad \theta(x_{14}) = \cdots = \theta(x_{16}) = \alpha^2, \quad \theta(x_{17}) = \theta(x_{18}) = \alpha^5, \quad \theta(x_{19}) = \alpha^3, \quad \theta(x_{20}) = \alpha^4, \quad \theta(x_{21}) = \alpha^6.
 \]
Costa-I-Parlier (2015): The completions in the Deligne-Munford compactification \tilde{B}_g of isolated strata of dim 1 given by the monodromies θ_h are isolated.

$$(\theta_h : \Delta(0; p, p, p, p) \rightarrow C_p : \theta_h(x_1) = a, \theta_h(x_2) = a^i, \theta_h(x_3) = a^j)$$

The limit points in \tilde{B}_g of every such stratum (given by a monodromy θ_h with quotient the sphere with four branch points of order p) is the covering given by f_{θ_h} of the limit point of pinched spheres with a decomposition in two pairs of pants, each pair of pants has as boundary two branch points and a curve surrounding two branch points. As in the next slide.
Milagros Izquierdo
On the Connectivity of Branch Loci of Spaces of Curves
Consider the (hyperbolic) orbifold of genus 0 with two branch points of order p and a cusp. The cyclic p-gonal coverings are given by the monodromies

$$\theta : \Delta(0; p, p, \infty) = \langle y_1, y_2 \mid y_1^p = y_2^p \rangle \rightarrow \langle t \rangle \text{ where } \theta(y_1) = t^a, \theta(y_2) = t^b$$

Two such maps (t^a, t^b) and (t'^a, t'^b) induce equivalent surfaces iif there exists a c such that $a' \equiv ca \mod (p), \ b' \equiv cb \mod (p)$. Each equivalence class of monodromies has a representative of type $(1, j)$. Call P_j the covering given by the monodromy of type $(1, j)$. The limit points of each stratum are

$$P_i + P_{-1 - i + 1 \over j}, \ P_j + P_{-1 - i + 1 \over j}, \ P_i + P_{p-1 - i - j}$$

where $2 \leq i \leq {p-1 \over 2}, \ i < j \leq p - 3, \ p - 1 - i - j \notin \{1, i, j, p - 1, -i, -j\}$

The limit points for other strata of p-gonal Riemann surfaces with quotient the sphere with four branch points are

$$P_1 + P_{p-3}, \ P_1 + P_1, \ P_{p-1} + P_{p-1}, \ P_{p-1} + P_{p-1}, \ P_i + P_i, \ P_{-i} + P_{-i} \text{ with } 2 \leq i \leq {p-1 \over 2}$$

and $P_1 + P_{p-i-2}, \ P_i + P_{p-i-2}$ where $2 \leq i \leq {p-1 \over 2}$

Using elementary number theory, the limit points $P_i + P_{-1 - i + 1 \over j}, \ P_j + P_{-1 - i + 1 \over j}, \ P_i + P_{p-1 - i - j}$ do no coincide with limit points of other stratum.

Finally these limit points do not admit any other automorphism.
The branch locus $\beta_{(q,-1)}$ consists of $\frac{q+2}{2}$ connected components if q is even and $\frac{q+1}{2}$ connected components if q is odd.

Consider Y, a hyperelliptic surface of type $E = (q, -1)$; $\chi(Y) = 1 - \frac{1}{q} \cdot 2 \cdot q - 1$.

A index z subgroup in Δ^* is $s(\Delta) = (\frac{q}{2}, 2; z; -22, 1\{2,2\})$.

$\text{Aut}(Y) \leq C_2 \times C_2$ (Bujalance–Etayo–Gamboa–Gromadzki, 1990).

Geometrically, we have the configuration for the action of $\text{Aut}(Y)/\Gamma_Y$:

- A hyperelliptic involution $\Theta: \Lambda \to C_2 \times C_2 = \langle a, b \rangle$ and monodromies Θ:
 - $s(\Lambda) = (\frac{q}{2}, 2; z; -22, 1\{2,2\})$.
 - $s(\Theta^r(a)) = (0; \frac{q}{2}; 2; 22)$.

- $\text{Or}(C_i) = a$; $\text{Or}(e) = a/1d$ according to r's parity.
 - $\text{Or}(C_i) = a$; $\text{Or}(C_{i+1}) = 1d$.

After a bijection $\Theta(C_i) = b$; $\text{Or}(C_{i+1}) = ab$.

The actions given by Θ are maximal. They produce $\frac{q+2}{2}$ connected components for q even and $\frac{q+1}{2}$ connected components for q odd.
\[B_{k, \text{Hyp}} \text{ is connected.} \]

Consider again a hyper. with top type \(S = (q, 0, i, 1) \), \(\text{Hyp. involution} \)
\[y = \frac{1}{n} \text{ and } \frac{1}{2} (4) = \frac{1}{n} \text{ with } \gamma(\Delta) = (0; +; \frac{1}{2}; \frac{1}{2}; \frac{3}{2}; \frac{5}{2}; \frac{7}{2}; \frac{9}{2}) \]

(a disc with \(2q + 1 \) cone pts)

The groups of automorphisms of \(\frac{1}{2} \) can be dihedral or cyclic.

\[\text{Aut}_n(y) : \]

\[\text{C}_n : n \text{ a proper divisor of } 2q + 1 \]
\[s(\Delta) = (0; +; \frac{1}{2}; \frac{5}{2}; \frac{7}{2}; \frac{9}{2}) \]

\[\text{C}_2 : n \text{ a proper divisor of } 2q \]
\[s(\Delta) = (0; +; \frac{1}{2}; \frac{5}{2}; \frac{7}{2}; \frac{9}{2}) \]

\[D_n : n \text{ an even divisor of } 4q + 2 \]
\[s(\Delta) = (0; +; \frac{1}{2}; \frac{5}{2}; \frac{7}{2}; \frac{9}{2}) \]

\[B_m x (2) : n \text{ an even divisor of } 4q + 2 \]
\[s(\Delta) = (0; +; \frac{1}{2}; \frac{5}{2}; \frac{7}{2}; \frac{9}{2}) \]

(\text{Bujalance, Gáyano, Gamboa, Gromadzki, 1990})
Graphically, consider configurations

They connect rotations and anticonformal involution of top. type

The following configurations show actions connecting all the strata induced by anticonformal involutions.
THANK YOU