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The Hartree equation

i∂tu = (−∆x + w ∗ |u|2)u

u(0, x) = f (x)

on R× Rn models dynamics of a Bose–Einstein condensate in Rn

in which all quantum particles occupy the same state u(t, x)

Well-posedness fairly well understood (Strichartz estimates,...)

Taking the interaction potential w as δ0 yields cubic NLS
In this case, Compaan–Lucà–Staffilani (2019) showed

lim
t→0

u(t, x) = f (x) for a.e. x

whenever f ∈ Hs(Rn) and s > max( n
2(n+1) ,

n−2
2 )



§1 Carleson’s problem

When w = 0 the pointwise convergence problem is known as
Carleson’s problem i.e. identifying minimal s such that

lim
t→0

e it∆f (x) = f (x) for a.e. x ∈ Rn

whenever f ∈ Hs(Rn)

Critical exponent is s = s(n) = n
2(n+1)

E.g. s(1) = 1
4 and limn→∞ s(n) = 1

2

Carleson, Dahlberg–Kenig (n = 1), Bourgain, Du–Guth–Li (n = 2),
Bourgain, Du–Zhang (n ≥ 3)



§2 Fermions

Unlike bosons, fermions cannot occupy the same state (Pauli
exclusion principle)

Described by N orthonormal functions u1, . . . , uN in L2(Rn)

Dynamics modelled by system of N Hartree equations

i∂tuj = (−∆x + w ∗ ρ)uj

uj(0, x) = fj(x) (j = 1, . . . ,N)

where

ρ(t, x) =
N∑

k=1

|uk(t, x)|2

is the total density of particles at time t, and f1, . . . , fN are
orthonormal

Well-posedness when N =∞?



Density matrices

Define operator γ(t) =
∑N

j=1 Πuj (t) by

γ(t)f :=
N∑
j=1

〈f , uj(t)〉uj(t)

System of N Hartree equations is equivalent to

i∂tγ = [−∆ + w ∗ ργ , γ]

γ(0) =
N∑
j=1

Πfj

where
ργ(t, x) = Kγ(t, x , x)

and Kγ is the integral kernel of γ(t)

Quick calculation reveals ργ = ρ



Density matrices

N =∞ can be formulated through

i∂tγ = [−∆ + w ∗ ργ , γ]

γ(0) = γ0

where γ0 is a more general (non-negative) operator

If γ0 =
∑

j λjΠfj is trace class (λ ∈ `1), solution can be written
γ(t) =

∑
j λjΠuj (t) where

i∂tuj = (−∆x + w ∗ ρ)uj

uj(0, x) = fj(x) (j = 1, . . . ,N)

and the density ργ =
∑

j λj |uj |2 is well-defined since

‖ργ(t)‖1 ≤
∑
j

|λj |‖uj(t, ·)‖2
2 = ‖λ‖`1 <∞



§3 Carleson’s problem for fermions

Consider the density matrix equation with w = 0 (von Neumann
Schrödinger equation)

i∂tγ = [−∆, γ]

γ(0) = γ0

Solution is γ(t) = e it∆γ0e
−it∆

It seems natural to pose the problem: For which γ0 do we have

lim
t→0

ργ(t)(x) = ργ0(x) for a.e. x

A more precise version: Given an appropriate Hilbert space H
(such as Ḣs or Hs), what is the largest β = β(s, n) for which

lim
t→0

ργ(t)(x) = ργ0(x) for a.e. x ∈ Rn

whenever γ0 belongs to the Schatten space Cβ(H)?



Finite-rank case corresponds to classical Carleson’s problem

To extend to the infinite-rank case, it suffices to prove
maximal-in-time estimates of the form∥∥∥∥∑

j

λj |e it∆fj |2
∥∥∥∥
L
q/2
x L∞t

. ‖λ‖`β

where (fj) is orthonormal in H

Strichartz estimates in this framework take the form∥∥∥∥∑
j

λj |e it∆fj |2
∥∥∥∥
L
q/2
t L

r/2
x

. ‖λ‖`β

where (fj) is orthonormal in Ḣs(Rn)

Frank–Lewin–Lieb–Seiringer, Frank–Sabin, Chen–Hong–Pavlovic,
B–Hong–Lee–Nakamura–Sawano, B–Lee–Nakamura,...

Certain endpoint cases open – back to this later



A result in 1D

Theorem (B–Lee–Nakamura)

The (weak-type) maximal-in-time estimate∥∥∥∥∑
j

λj |e it∆fj |2
∥∥∥∥
L2,∞
x L∞t (R×R)

. ‖λ‖`β

holds for all (fj) orthonormal in Ḣ1/4(R) if and only if β < 2

Consequently

lim
t→0

ργ(t)(x) = ργ0(x) for a.e. x ∈ R

holds whenever γ0 ∈ Cβ(Ḣ1/4) and β < 2



A problem of Frank–Sabin

Theorem (B–Lee–Nakamura)

Let a > 0 and a 6= 1. If β < 2, the (weak-type) maximal-in-space
estimate ∥∥∥∥∑

j

λj |e it(−∆)a/2
fj |2
∥∥∥∥
L2,∞
t L∞x (R×R)

. ‖λ‖`β

holds for all (fj) orthonormal in Ḣ
1
2
− a

4 (R)

When a = 2, Frank–Sabin obtained that β = 2r
r+2 is optimal for

L
q/2
t L

r/2
x (R× R) whenever 2

q + 1
r = 1

2 and r ∈ [2,∞)

But, for r =∞, only the (trivial) case β = 1 was known



In 1D, maximal-in-space imply maximal-in-time since we can
switch the roles of space and time

xξ + tξ2 = tη + x
√
η

via the change of variables η = ξ2

Minor snag: orthogonality of data breaks, but this can be recouped
via some symmetrisation


