Irregular solutions of the transport and Navier-Stokes equations

Maria Colombo

EPFL
EPFL SB, Institute of Mathematics

June 22nd, 2021
ECM 2021, A journey from pure to applied mathematics
We want to describe the motion of some particles of clouds. We model the clouds as a gas/liquid with given velocity \(\mathbf{v}(x) \) for each position \(x \) (direction and intensity).

A single particle is transported along an integral curve of \(\mathbf{v} \)

\[
\frac{d}{dt}\gamma(t) = \mathbf{v}(\gamma(t)) \quad \text{for any } t \in [0, \infty).
\]
If the particles are many, we model them as a distribution, namely with a measure μ_0. μ_t evolves according to the PDE

$$\partial_t \mu_t + \mathbf{v} \cdot \nabla \mu_t = 0.$$
Incipit - Evolution of a distribution of particles

If the particles are many, we model them as a distribution, namely with a measure μ_0. μ_t evolves according to the PDE

$$\partial_t \mu_t + \mathbf{v} \cdot \nabla \mu_t = 0.$$
If the particles are many, we model them as a distribution, namely with a measure μ_0. μ_t evolves according to the PDE

$$\partial_t \mu_t + \mathbf{v} \cdot \nabla \mu_t = 0.$$
Outline of the talk

1. Flow of vector fields and continuity equation

2. Smooth vs nonsmooth theory
 - Lack of uniqueness of the flow for nonsmooth vector fields
 - Regular Lagrangian Flows and the nonsmooth theory

3. A.e. uniqueness of integral curves
 - Ambrosio’s superposition principle
 - Ill-posedness of CE by convex integration
Table of contents

1. Flow of vector fields and continuity equation
 - Smooth vs nonsmooth theory
 - Lack of uniqueness of the flow for nonsmooth vector fields
 - Regular Lagrangian Flows and the nonsmooth theory
 - A.e. uniqueness of integral curves
 - Ambrosio’s superposition principle
 - Ill-posedness of CE by convex integration
The flow of a vector field

Given a vector field \(b : [0, \infty) \times \mathbb{R}^d \to \mathbb{R}^d \), consider the flow \(X \) of \(b \):

\[
\begin{cases}
\frac{d}{dt} X(t, x) = b_t(X(t, x)) & \forall t \in [0, \infty) \\
X(0, x) = x.
\end{cases}
\]

It can be seen
- as a collection of trajectories \(X(\cdot, x) \) labelled by \(x \in \mathbb{R}^d \);
- as a collection of diffeomorphisms \(X(t, \cdot) : \mathbb{R}^d \to \mathbb{R}^d \).
Consider the related PDE, named **continuity equation**

\[
\begin{cases}
\partial_t \mu_t + \text{div} (b_t \mu_t) = 0 & \text{in } (0, \infty) \times \mathbb{R}^d \\
\mu_0 \text{ given.}
\end{cases}
\]

When b_t is sufficiently smooth and $\mu_t : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ is a smooth function, all derivatives can be computed. Much less is needed to give a distributional sense to the PDE (e.g. b_t bounded and μ_t finite measures).

When

\[\text{div} b_t \equiv 0,\]

the continuity equation is equivalent to the **transport equation**

\[
\partial_t \mu_t + b \cdot \nabla \mu_t = 0.
\]
Connection between continuity equation and flows

Solutions of the CE flow along integral curves of b

Given b, its flow X an initial distribution of mass $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$, a solution of the CE is

$$\mu_t := X(t, \cdot) \# \mu_0.$$

Recall that the measure $X(t, \cdot) \# \mu_0$ is defined by

$$\int_{\mathbb{R}^d} \varphi(x) \, d[X(t, \cdot) \# \mu_0](x) = \int_{\mathbb{R}^d} \varphi(X(t, x)) \, d\mu_0(x) \quad \forall \varphi : \mathbb{R}^d \to \mathbb{R}. $$

Indeed, for any test function $\varphi \in C^\infty_c(\mathbb{R}^d)$ we have

$$\frac{d}{dt} \int_{\mathbb{R}^d} \varphi \, d\mu_t = \frac{d}{dt} \int_{\mathbb{R}^d} \varphi(X(t, x)) \, d\mu_0(x) = \int_{\mathbb{R}^d} \nabla \varphi(X) \cdot \partial_t X \, d\mu_0$$

$$\quad = \int_{\mathbb{R}^d} \nabla \varphi(X) \cdot b_t(X) \, d\mu_0 = \int_{\mathbb{R}^d} \nabla \varphi \cdot b_t \, d\mu_t.$$

This is the distributional formulation of the continuity equation.
Is the solution of the continuity equation starting from \(\mu_0 \) unique?

YES if \(\nabla b \) is bounded

Given a solution \(\nu_t \) to CE, set \(\tilde{\nu}_t = X(t, \cdot)^{-1} \# \nu_t \) and compute

\[
\frac{d}{dt} \int_{\mathbb{R}^d} \varphi \, d\tilde{\nu}_t = 0,
\]

so \(X(t, \cdot)^{-1} \# \nu_t = \tilde{\nu}_t = \nu_0 = \mu_0 \Rightarrow \nu_t := X(t, \cdot) \# \mu_0. \)

Cauchy-Lipschitz Theorem

Let \(b_t \) a vector field with \(\nabla b_t \) bounded. Then for every \(x \in \mathbb{R}^d \) there exists a unique solution \(X(\cdot, x) : [0, \infty) \to \mathbb{R}^d \) of the ODE.

NO if \(b \) is less regular

As soon as uniqueness for the ODE fails.
Table of contents

1. Flow of vector fields and continuity equation

2. Smooth vs nonsmooth theory
 - Lack of uniqueness of the flow for nonsmooth vector fields
 - Regular Lagrangian Flows and the nonsmooth theory

3. A.e. uniqueness of integral curves
 - Ambrosio’s superposition principle
 - Ill-posedness of CE by convex integration
Less regular vector fields appear

- in **fluid dynamics**, when a fluid or a gas develop a turbulent behavior or a discontinuity/singularity (shear flows, shock waves...). As an example, in the theory of turbulence, the Onsager conjecture regards Holder continuous solutions to Euler; some of the optimal regularity estimates for Navier-Stokes are based on the understanding of its flow.

- in **meteorology**, to build solutions of the semigeostrophic system in 2d and 3d [Ambrosio, C., De Philippis, Figalli, '12, '14];

- in **kinetic equations**, to give a lagrangian description of solutions to the Vlasov-Poisson system [Ambrosio, C., Figalli, '15, '17];

- studying the geometry of nonsmooth manifolds with curvature bounds (in this direction, see also [C., Tione '20]).
Nonsmooth theory: lack of uniqueness

One-dimensional autonomous vector field with lack of uniqueness

\[b(x) = 2\sqrt{|x|}, \quad x \in \mathbb{R} \]

Given \(x_0 = -c^2 < 0 \), the 1-parameter family of curves that stop at the origin for an arbitrary time \(T \geq 0 \), solve the ODE.

\[x(t) = \begin{cases} x_0 & \text{if } t < c + T \\ \frac{(t - c - T)^2}{2} & \text{if } t \geq c + T \end{cases} \]

\[x_0 = -c^2 \]
Between all the possible integral curves, a “better selection” could be made by the ones that do not stop in 0. In other words, we wish to select a collection of integral curves that “do not concentrate”.
Regular lagrangian flows

Given a vector field \(\mathbf{b} : (0, T) \times \mathbb{R}^d \to \mathbb{R}^d \), the map \(\mathbf{X} : [0, \infty) \times \mathbb{R}^d \to \mathbb{R}^d \) is a regular Lagrangian flow of \(\mathbf{b} \) if:

(i) for \(\mathcal{L}^d \)-a.e. \(x \in \mathbb{R}^d \), \(\mathbf{X}(\cdot, x) \) solves the ODE \(\dot{x}(t) = \mathbf{b}_t(x(t)) \) starting from \(x \);

(ii) \(\mathbf{X}(t, \cdot) \# \mathcal{L}^d \leq C \mathcal{L}^d \) for every \(t \in [0, T] \) and for some \(C > 0 \).

Theorem ([Di Perna-Lions '89], [Ambrosio '04])

Let us assume that \(|\nabla \mathbf{b}_t| \in L^1_{loc}(\mathbb{R}^d) \), \(\text{div} \mathbf{b}_t \in L^\infty(\mathbb{R}^d) \) and

\[
\frac{|\mathbf{b}_t(x)|}{1 + |x|} \in L^1(\mathbb{R}^d) + L^\infty(\mathbb{R}^d).
\]

Then there exists a unique regular Lagrangian flow \(\mathbf{X} \) of \(\mathbf{b} \).
The regularity assumption $|\nabla b_t| \in L_{loc}^1(\mathbb{R}^d)$ can be replaced by

- ∇b_t is a matrix-valued finite measure, [Ambrosio 04];
- singular integrals of L^1 functions, [Bohun, - Bouschut, Crippa 13].

The assumption $\text{div } b_t \in L^\infty(\mathbb{R}^d)$ can be weakened to $\text{div } b_t \in BMO(\mathbb{R}^d)$ [Mucha, 2010], [C., Crippa, Spirito 2016].

A different approach to this result was proposed by [Crippa, De Lellis, 08], considering a functionals of the type

$$\Phi_\delta(t) := \int \log \left(1 + \frac{|X_1(t, x) - X_2(t, x)|}{\delta} \right) dx \quad t \in [0, T];$$

Question: a.e. uniqueness of integral curves

Does any divergence free $b \in L^1_t W^{1,p}_x$ admit a unique integral curve (namely, $\gamma \in W^{1,1}(0, T)$ solution of the ODE $\dot{\gamma}(t) = b(t, \gamma)$) for a.e. initial datum $x \in \mathbb{R}^d$?

Open since the pioneering works of DiPerna-Lions and Ambrosio.
Flows of vector fields

Maria Colombo

Flow of vector fields and continuity equation

Smooth vs nonsmooth theory

Lack of uniqueness

Regular Lagrangian flows

A.e. uniqueness of integral curves

Ambrosio’s superposition principle

Ill-posedness of CE by convex integration
Main result

If $p < d$ then the a.e. uniqueness for trajectories does not hold.

Theorem ([Brué-C.-DeLellis, ’20])

For every $d \geq 2$, $p < d$ and $s < \infty$ there exist a divergence free velocity field $b \in C_t(W^{1,p}_x \cap L^s_x)$ and a set $A \subset \mathbb{T}^d$ such that

- $\mathcal{L}^d(A) > 0$;
- for any $x \in A$ there are at least two integral curves of b starting at x.

[Sorella, Pitcho, ’21] and [Sorella, Giri, ’21] show that the set A can be taken of full measure in the torus and that the theorem adapts to hamiltonian structures.

What about the critical case $p = d$?
Our strategy

Ingredients of proof:

- Ambrosio’s superposition principle to connect the a.e. uniqueness of trajectories to uniqueness results for positive solutions to (CE).

- A new (asymmetric) Lusin-Lipschitz type inequality.

- Non-uniqueness theorem for positive solutions to (CE) based on convex integration type techniques borrowed from [Modena-Székelyhidi ’18].
Take a vector field \mathbf{b} with two different flows. Then we observed that both

$$X_1(t, \cdot) \# \mu_0 \quad \text{and} \quad X_2(t, \cdot) \# \mu_0$$

solve the CE starting from μ_0. By linearity,

$$\lambda X_1(t, \cdot) \# \mu_0 + (1 - \lambda) X_2(t, \cdot) \# \mu_0$$

is a solution as well. We can interpret this as "choosing X_1 with probability λ and X_2 with probability $1 - \lambda"."
Ambrosio’s superposition principle

A measure valued solution \(\mu \in L^\infty_t(\mathcal{M}_+) \) to (CE) with velocity \(\mathbf{b} \) is a superposition solution if for \(\mu_0 \)-a.e. \(x \in \mathbb{T}^d \) there exists \(\eta_x \in \mathcal{P}(C([0, T], \mathbb{T}^d)) \) such that

- \(\eta_x \) is concentrated on integral curves of \(\mathbf{b} \) starting at \(x \);
- we have the representation formula \(\mu = (e_t)_\#(\mu_0 \otimes \eta_x) \),

\[
\int \phi \, d\mu_t = \int \left(\int \phi(\gamma(t)) \, d\eta_x(\gamma) \right) \, d\mu_0(x).
\]

Superposition solutions are averages of integral curves of \(u \).

Theorem ([Ambrosio ’04])

Let \(\mathbf{b} : [0, T] \times \mathbb{T}^d \to \mathbb{R}^d \), \(\mu \in L^\infty_t(\mathcal{M}_+) \) solution of CE with

\[
\int_0^T \int |\mathbf{b}(t, x)| \, d\mu_t(x) \, dt < \infty.
\]

Then it is a superposition solution.
If we produce an example of nonuniqueness of positive solutions of the continuity equation in some range of exponents we have disproved the a.e. uniqueness of integral curves.

Theorem ([Brué-C.-DeLellis, ’20])

Let \(d \geq 2, \ p \in (1, \infty), \ r \in [1, \infty], \ \frac{1}{r} + \frac{1}{r'} = 1 \) be such that

\[
\frac{1}{p} + \frac{1}{r} > 1 + \frac{1}{d}.
\]

Then there exist \((b, u)\) solution of the CE with
- a divergence-free vector field \(b \in C_t(W^{1,p}_x \cap L^{r'}_x) \),
- a positive, nonconstant \(u \in C_tL^r_x \) with \(u(0, \cdot) = 1 \)
The main theorem follows: any velocity field obtained in the previous theorem does not have the a.e. uniqueness for integral curves. Indeed

- Since $\text{div} \, b = 0$, the function $\bar{u} \equiv 1$ solves CE.
- The u constructed in this theorem is a second distinct solution!
- As seen before, a.e. uniqueness of integral curves implies uniqueness of positive solutions to (CE).

The construction is based on convex integration scheme, as in the groundbreaking works [DeLellis-Székelyhidi, '09-'13], [Isett '16] for the Euler equation and [Buckmaster-Vicol '17] for Navier-Stokes.

The first ill-posedness result for (CE) with Sobolev velocity field has been proven in [Modena-Székelyhidi, '18], [Modena-Sattig, '19].

Main novelties: positive solutions, a simpler convex integration scheme in any dimension.
The convex integration scheme

- We start from CE solved with an error

\[
\begin{cases}
\partial_t u_q + \text{div} (b_q u_q) = \text{div} R_q \\
\text{div} b_q = 0
\end{cases}
\]

Solutions are obtained through an inductive procedure as
\[u = \lim_{q \to \infty} u_q, \quad u = \lim_{q \to \infty} b_q\]
and \(\lim_{q \to \infty} \|R_q\|_{L^1} = 0\).

- We look for \(b_{q+1} = b_q + a B_{q+1}, \quad u_{q+1} = u_q + b U_{q+1}\), where \(B_q\) and \(U_q\) are "highly oscillating" time-dependent versions of Mikado-flows (Cf. [Daneri-Székelyhidi '17]). \(a\) and \(b\) are "slow" functions. They cancel the error when interact

\[|R_q - abB_q U_q| \ll 1.\]

- We exploit the scaling invariances of the equation by making \(B_q\) and \(U_q\) concentrated ([Buckmaster-Vicol, '17]).

Heuristic idea: Ill-posedness happens when \(u\) "concentrates" where \(b\) is far from being Lipschitz (i.e. \(\nabla b\) is "big").
Thank you for your attention! *

* and thanks to D. Strütt, EPFL, for the first pictures and animation