Let \mathbb{K} denote either the division algebra of quaternions \mathbb{H} or that of octonions \mathbb{O}, and let $S \subset \mathbb{K}$ be the 2-sphere or, respectively, the 6-sphere of imaginary units, i.e. the sets of $I \in \mathbb{K}$ such that $I^2 = -1$. If $I \in \mathbb{K}$ we define the slice $C_I := \mathbb{R} + I \mathbb{R}$ and say that a domain $\Omega \subset \mathbb{K}$ is a slice domain if $\Omega \cap \mathbb{R} \neq \emptyset$ and $\Omega_I := \Omega \cap C_I$ is a domain in C_I for any $I \in S$.

Let $\Omega \subset \mathbb{K}$ be a slice domain and let $f : \Omega \to \mathbb{K}$ be a function. If, for an imaginary unit I of \mathbb{K}, the restriction $f_I := f|_{\Omega_I}$ has continuous partial derivatives and

$$\frac{\partial f(x + yI)}{\partial x} + I \frac{\partial f(x + yI)}{\partial y} = 0,$$

then f_I is called holomorphic. If f_I is holomorphic for all imaginary units of \mathbb{K}, then the function f is called slice regular.

We refer the interested reader to the monograph [1] for an introduction to the main properties of slice regular functions in the quaternionic setting.

Main results

As customary, a differentiable map will be called an immersion if its differential is injective at all points of the domain of definition.

Let n, N be natural numbers with $N \geq n$ and let Ω be a domain in \mathbb{R}^n. An at least C^1 immersion $f : \Omega \to \mathbb{R}^N$ will be called a conformal or isothermal map if the matrix of the differential of f is conformal, i.e., if it satisfies

$$df(p)df(p) = k(p)I_n$$

for a (never vanishing and at least C^1) function $k : \Omega \to \mathbb{R}$.

We specialize this definition for our purposes.

Let Ω be a slice domain in $\mathbb{H} \cong \mathbb{R}^4$ and let $N \geq 4$ be a natural number. Let $f : \Omega \to \mathbb{R}^N$ be an at least C^1 immersion. If, for any $I \in S$, df_{C_I} and $df_{C_{I^*}}$ satisfy (2), then f will be called a slice conformal or slice isothermal immersion.

References
