Stochastic completeness and uniqueness class for graphs

Xueping Huang
joint work with M. Keller and M. Schmidt
Nanjing University of Information Science & Technology

June 24, 2021
Outline

1. Background
2. Weighted graphs
3. Main results
4. Sharpness
Heat equation on \mathbb{R}

Consider the Cauchy problem for the heat equation:

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) + \Delta u(x, t) &= 0, \\
u(\cdot, 0) &\equiv 0;
\end{aligned}
$$

Here $u : \mathbb{R} \times [0, T] \to \mathbb{R}$, with $\Delta u(x, t) = -\frac{\partial^2}{\partial x^2} u(x, t)$.
Tichonov solution

Natural solution: \(u \equiv 0 \);
Tichonov solution:

\[
\begin{align*}
 u(x, t) &= \sum_{k=0}^{\infty} \frac{g^k(t)}{(2k)!} x^{2k}, \\
 g(t) &= \begin{cases}
 \exp(t^{-2}), & t > 0, \\
 0, & t \leq 0.
 \end{cases}
\end{align*}
\]

where

\[|u(x, t)| \text{ can be bounded at best by } \exp\left(C(\varepsilon) |x|^{2+\varepsilon} \right). \]
Täcklind’s uniqueness class

Täcklind proved that if $|u(x, t)| \leq h(|x|)$ for $|x|$ large, where

$$
\int_{-\infty}^{\infty} \frac{r}{\ln h(r)} \, dr = +\infty,
$$

then $u \equiv 0$. The solution to the Cauchy problem (♠) is unique in such a class of functions. In particular, bounded functions form a uniqueness class.
Stochastic completeness

The Laplacian Δ generates a semigroup of operators

$$P_t = \exp(-t\Delta), \ t \geq 0.$$

It is closely related to the Brownian motion $(B_t)_{t \geq 0}$ on \mathbb{R}:

$$P_tf(x) = \mathbb{E}_x(f(B_t)).$$

Bounded solutions form a uniqueness class \iff stochastic completeness, that is,

$$P_t1 = 1.$$

(Note that $1 - P_t1$ is a bounded solution to the Cauchy problem.)
Heat equation on manifolds

Let \((M, g)\) be a complete Riemannian manifold with the Laplace-Beltrami operator \(\Delta \geq 0\). Consider the Cauchy problem for the heat equation:

\[
\begin{cases}
\frac{\partial}{\partial t} u(x, t) + \Delta u(x, t) = 0, \\
u(\cdot, 0) \equiv 0.
\end{cases}
\]
Grigor’yan’s uniqueness class

Theorem (Grigor’yan)

If \(u : M \times [0, T] \to \mathbb{R} \) solves (♠) and satisfies

\[
\int_0^T \int_{B(\bar{x}, r)} u^2(x, t) \, d\text{vol}(x) \, dt \leq h(r)
\]

for \(r \) large, where

\[
\int_0^\infty \frac{r}{\ln h(r)} \, dr = +\infty,
\]

then \(u \equiv 0 \).
Proof strategy

A localized version of monotonicity formula:

\[
\frac{d}{dt} \int_M u^2(x, t) \exp \xi(x, t) \, d\text{vol}(x) \leq 0,
\]

where \(\xi \) satisfies

\[
\frac{\partial}{\partial t} \xi(x, t) + \frac{1}{2} |\nabla \xi(x, t)|^2 \leq 0.
\]

For example: \(\xi(x, t) = -\frac{d(\bar{x}, x)^2}{2t} \).
Stochastic completeness

The Laplacian Δ generates a semigroup of operators

$$ P_t = \exp(-t\Delta), \quad t \geq 0. $$

It is closely related to the Brownian motion $(B_t)_{t \geq 0}$ on (M, g):

$$ P_t f(x) = \mathbb{E}_x(f(B_t)). $$

Bounded solutions form a uniqueness class \iff stochastic completeness, that is,

$$ P_t 1 = 1. $$
Volume growth criteria for stochastic completeness

The uniqueness class theorem, when applied to bounded solutions, implies a sharp volume growth type criterion for stochastic completeness.

Theorem (Grigor’yan)

Suppose

$$\int_{\infty}^{\infty} \frac{rdr}{\ln(\text{vol}(B_d(\bar{x}, r)))} = \infty,$$ \hspace{1cm} (†)

then the Brownian motion on \((M, g)\) is stochastically complete.
Heat equation on \mathbb{Z}

What happens for graphs?

$\begin{cases}
\frac{\partial}{\partial t} u(x, t) + \Delta u(x, t) = 0,
\end{cases}$

$u(\cdot, 0) \equiv 0.$

Here $u : \mathbb{Z} \times [0, T] \rightarrow \mathbb{R}$, with

$\Delta u(n, t) = 2u(n, t) - (u(n - 1, t) + u(n + 1, t)).$
Tichonov type solution

Natural solution: \(u \equiv 0 \);

Tichonov type solution:

\[
\begin{align*}
 u(n, t) &= \begin{cases}
 g(t), & n = 0; \\
 \sum_{k=0}^{\infty} \frac{g^k(t)}{(2k)!} (n + k) \cdots (n + 1) n \cdots (n - k + 1), & n \geq 1; \\
 u(-n - 1, t), & n \leq -1.
 \end{cases}
\end{align*}
\]

where

\[
 g(t) = \begin{cases}
 \exp(t^{-2}), & t > 0, \\
 0, & t \leq 0.
 \end{cases}
\]
Growth

Note that for \(n \geq 1 \),

\[
\sum_{k=0}^{\infty} \frac{g^k(t)}{(2k)!} (n + k) \cdots (n + 1)n \cdots (n - k + 1) = \sum_{k=0}^{n} \cdots .
\]

In contrary to the smooth case, for large \(|n| \),

\[
|u(n, t)| \leq \exp(C |n| \ln |n|).
\]
Questions

• What about the uniqueness class for general weighted graphs? We cannot expect growth conditions as large as the smooth case.

• What is the sharp volume growth type criterion for stochastic completeness of weighted graphs?
Weighted graphs

Let V be a discrete countable set with weights:

- $\mu : V \to (0, \infty)$, as a measure on V;
- $w : V \times V \to [0, \infty)$
 - a. $w(x, y) = w(y, x)$;
 - b. $w(x, x) = 0$;
 - c. $\sum_{y \in V} w(x, y) < +\infty$.

Denote $x \sim y$ when $w(x, y) > 0$. We assume connectedness.

The formal Laplacian:

$$(\Delta f)(x) = \frac{1}{\mu(x)} \sum_{y \in V} w(x, y)(f(x) - f(y)).$$
The heat semigroup

The Laplacian Δ generates the heat semigroup

$$P_t = \exp(-t\Delta), \quad t \geq 0,$$

which corresponds to a minimal continuous time Markov chain on V.

Bounded solutions form a uniqueness class for the Cauchy problem (\spadesuit) of the heat equation \iff stochastic completeness, that is,

$$P_t1 = 1.$$
\(\mathbb{Z} \) with weights

\[V = \mathbb{Z}, \text{ with } n \sim n + 1, \text{ as a graph.} \]

- \(\mu(n) \equiv 1, \ w(n, n + 1) \equiv 1; \)
- \(\mu(n) \equiv 1, \ w(0, -1) = 1, \)
 \(w(n - 1, n) = w(-n, -n - 1) = n \) for \(n \geq 1. \)
Intrinsic metrics

Definition

A metric d on (V, w, μ) is called an intrinsic metric if

$$\forall x \in V, \quad \frac{1}{\mu(x)} \sum_{y \in V} w(x, y)d(x, y)^2 \leq 1. \quad (\Diamond)$$

Remark

An intrinsic metric is sensible to the weights μ, w. Condition (\Diamond) is a discrete analogue of $|\nabla d(\bar{x}, \cdot)| \leq 1$. For simplicity, we also assume bounded jump size: $d(x, y) \leq \sigma_0$ whenever $x \sim y$.
Examples of intrinsic metrics

\[V = \mathbb{Z}, \text{ with } n \sim n + 1, \text{ as a graph.} \]

- \(\mu(n) \equiv 1, \ w(n, n + 1) \equiv 1; \text{ let } d(n, n + 1) \equiv \frac{\sqrt{2}}{2} \) which is naturally extended to a shortest path metric.

- \(\mu(n) \equiv 1, \ w(0, -1) = 1, \ w(n - 1, n) = w(-n, -n - 1) = n \text{ for } n \geq 1; \text{ let } \)

\[
d(n - 1, n) = \sqrt{\frac{1}{2 \vee (2 |n| + 1)}},
\]

which is naturally extended to a shortest path metric.
Uniqueness class

Theorem (H.)

Under some mild conditions, for some constant $c > 0$, if $u : V \times [0, T] \to \mathbb{R}$ solves the Cauchy problem \mathcal{L} and satisfies

$$
\int_0^T \int_{B(\bar{x}, r)} u^2(x, t) \, d\mu(x) \, dt \leq \exp(c\sigma_0 r \ln r)
$$

for r large, then $u \equiv 0$.

Remark

As a consequence, if $\mu(B(\bar{x}, r)) \leq \exp(c\sigma_0 r \ln r)$ for r large, then the corresponding Markov chain is stochastically complete.
Difficulties

Lack of chain rule: unlike

$$|\nabla \exp \xi(x)| \leq \exp \xi(x) |\nabla \xi(x)|,$$

we have at best

$$\frac{1}{\mu(x)} \sum_{y \in V} w(x, y) (\exp \xi(x) - \exp \xi(y))^2$$

$$\leq \exp 2(\xi(x) \lor \xi(y)) \frac{1}{\mu(x)} \sum_{y \in V} w(x, y) (\xi(x) - \xi(y))^2.$$
Stochastic completeness

Theorem (Folz)

Under some technical conditions, if

\[
\int_{0}^{\infty} \frac{r \, dr}{\ln \mu(B(\bar{x}, r))} = \infty,
\]

then \((V, w, \mu)\) is stochastically complete.

Remark

Folz works by relating the Markov chain to a diffusion. Stochastic completeness is about “very large” time property, and is much more stable than the uniqueness class is (which involves short time information as well).
Goals of the present work

- to recover Grigor’yan’s uniqueness class for a certain special class of weighted graphs;
- to apply stability arguments to obtain a generalized version of Folz’s volume growth criterion.
GL (globally local) condition

Let

$$s_r := \sup \{ d(x, y) \mid x, y \in X \text{ with } x \sim y \text{ and } d(x, \bar{x}) \land d(y, \bar{x}) \geq r \}.$$

Definition

A weighted graph \((V, w, \mu)\) with an intrinsic metric \(d\) is called globally local with respect to an increasing function \(f : (0, \infty) \to (0, \infty)\) if there is a constant \(A > 1\) such that

$$\limsup_{r \to \infty} \frac{s_r f(Ar)}{r} < \infty. \quad \text{(GL)}$$
Uniqueness class under the GL condition

Theorem (H., Keller, Schmidt)

Let a weighted graph \((V, w, \mu)\) with an intrinsic metric \(d\) be globally local with respect to an increasing function \(f : (0, \infty) \rightarrow (0, \infty)\) with \(\int_{\infty}^{\infty} \frac{r}{f(r)} \, dr = +\infty\). Assume that balls in \(d\) are finite. If \(u : V \times [0, T] \rightarrow \mathbb{R}\) solves the Cauchy problem \((\spadesuit)\) and satisfies

\[
\int_{0}^{T} \int_{B(\bar{x}, r)} u^2(x, t) \, d\mu(x) \, dt \leq \exp f(r)
\]

for \(r\) large, then \(u \equiv 0\).
Stochastic completeness

Theorem (H., Keller, Schmidt)

Let \((V, w, \mu)\) be a weighted graph with an intrinsic metric \(d\) such that balls in \(d\) are finite. If

\[
\int_{\infty} r \, dr \left(\frac{r \, dr}{\ln \mu(B(\bar{x}, r))} \right) = \infty,
\]

then \((V, w, \mu)\) is stochastically complete.
Stability and modifications of weighted graphs

Main ingredients:

• a “piecing out” argument to deal with unbounded jump size;

• adding new vertices to the original weighted graph to split big jumps into smaller steps (a globally local one);

• a potential theoretic argument (the weak Omori-Yau maximum principle) for stability of stochastic completeness under modifications.
A sharpness example

\[V = \mathbb{Z}, \text{ with } n \sim n + 1, \text{ as a graph. Given weights } \mu(n) \equiv 1, \]
\[w(0, -1) = 1, \ w(n - 1, n) = w(-n, -n - 1) = n \text{ for } n \geq 1. \text{ Let } \]
\[d(n - 1, n) = \sqrt{\frac{1}{2 \vee (2|n| + 1)}}, \]

which is naturally extended to a shortest path metric.
A sharpness example

We have $d(0, n) \simeq \sqrt{|n|}$, and $s_r \simeq \frac{1}{r}$ for r large.

A Tichonov type solution:

$$u(n, t) = \begin{cases}
 g(t), & n = 0; \\
 \sum_{k=0}^{\infty} \binom{n}{k} \frac{g^k(t)}{k!}, & n \geq 1; \\
 u(-n - 1, t), & n \leq -1.
\end{cases}$$
A sharpness example

Bound:

\[
\int_0^T \int_{B(\bar{x},r)} u^2(x, t) \, d\mu(x) \, dt \leq \exp(Cr^2 \ln r)
\]

for \(r \) large.

Note

\[
\frac{s_r f(Ar)}{r} \sim \ln r.
\]

This example fails to be globally local with respect to \(f(r) = Cr^2 \ln r \) (roughly by a factor of \(\ln r \)), and a Tichonov type solution is present.
References

X. Huang, M. Keller, and M. Schmidt,
On the uniqueness class, stochastic completeness and volume growth for graphs.

A. Grigor’yan,
Stochastically complete manifolds,

A. Grigor’yan,
Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds,
References (cont.)

A. N. Tichonov,
Uniqueness theorems for the equation of heat conduction.

S. Täcklind,
Sur les classes quasianalytiques des solutions des équations aux dérivées partielles du type parabolique.

M. Folz,
Volume growth and stochastic completeness of graphs.
References (cont.)

R. K. Wojciechowski,
Stochastic completeness of graphs,

M. Keller and D. Lenz,
Dirichlet forms and stochastic completeness of graphs and subgraphs,

R. L. Frank, D. Lenz, and D. Wingert,
Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory.
References (cont.)

X. Huang,
Stochastic incompleteness for graphs and weak Omori-Yau maximum principle.

X. Huang
On uniqueness class for a heat equation on graphs.

A. Grigor’yan, X. Huang and J. Masamune
On stochastic completeness of jump processes.

References (cont.)

X. Huang
A note on the volume growth criterion for stochastic completeness of weighted graphs.

X. Huang and Y. Shiozawa
Upper escape rate of Markov chains on weighted graphs.
Thank you very much!