1 Drawdowns
- Introduction
- The Classical Risk Model
- The Diffusion Approximation
1 Drawdowns
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples

Hanspeter Schmidli
Optimal Drawdowns in Insurance
1. **Drawdowns**
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2. **The Classical Risk Model**
 - General Results
 - The Solution
 - Examples

3. **The Diffusion Approximation**
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
1. **Drawdowns**
 - **Introduction**
 - The Classical Risk Model
 - The Diffusion Approximation

2. **The Classical Risk Model**
 - General Results
 - The Solution
 - Examples

3. **The Diffusion Approximation**
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
Definition of Drawdown

For a surplus process X_t denote by

$$\bar{X}_t = \max\{\bar{x}, \sup_{s \leq t} X_s\}$$

the running maximum. The drawdown

$$D_t = \bar{X}_t - X_t$$

is the deviation from the running maximum. We allow a past maximum \bar{x}.
Interpretation

- Large drawdowns are a reputational risk
Large drawdowns are a reputational risk
Investors compare with current maximum (risk for the manager)
Interpretation

- Large drawdowns are a reputational risk
- Investors compare with current maximum (risk for the manager)
- Goal is to keep surplus near maximum (stabilisation) which simplifies planning future strategies
Large drawdowns are a reputational risk
Investors compare with current maximum (risk for the manager)
Goal is to keep surplus near maximum (stabilisation) which simplifies planning future strategies
We try to keep the drawdown below some level d
Drawdowns

Introduction

Interpretation

- Large drawdowns are a reputational risk
- Investors compare with current maximum (risk for the manager)
- Goal is to keep surplus near maximum (stabilisation) which simplifies planning future strategies
- We try to keep the drawdown below some level d
- Drawdown below the critical level only for a short time
Reinsurance

The insurer buys proportional reinsurance with retention level $b_t \in [0, 1]$ at time t. That is, the insurer pays $b_t Y$, the reinsurer $(1 - b_t) Y$ of a claim of size Y. The reinsurer uses an expected value principle with safety loading θ. We assume that reinsurance is more expensive than first insurance in order that the problem below is not trivial. The insurer chooses continuously a reinsurance strategy $\{b_t\}$.
The Optimisation Problem

The value of a reinsurance strategy \(b \) is

\[
V^b(x) = \mathbb{E}\left[\int_0^\infty e^{-\delta t} \mathbb{I}_{D_t^b > d} \, dt \right].
\]

We are interested in the optimal value

\[
V(x) = \inf_b V^b(x)
\]

and, if it exist, the optimal strategy \(b^* \).
1. **Drawdowns**
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2. **The Classical Risk Model**
 - General Results
 - The Solution
 - Examples

3. **The Diffusion Approximation**
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
The Cramér–Lundberg Model

Let

\[X_t = \bar{x} - x + ct - \sum_{k=1}^{N_t} Y_k, \]

where \(N \) is a Poisson process with rate \(\lambda \) and iid claim \(\{Y_k\} \) with expected value \(\mu \). We write \(c = (1 + \eta)\lambda \mu \) for some \(\eta > 0 \).
The Cramér–Lundberg Model

Let

\[X_t = \bar{x} - x + ct - \sum_{k=1}^{N_t} Y_k , \]

where \(N \) is a Poisson process with rate \(\lambda \) and iid claim \(\{Y_k\} \) with expected value \(\mu \). We write \(c = (1 + \eta)\lambda\mu \) for some \(\eta > 0 \).

After reinsurance,

\[X_t^b = \bar{x} - x + \int_0^t c(b_s) \, ds - \sum_{k=1}^{N_t} b_{T_k} Y_k , \]

where \(c(b) = c - (1 - b)(1 + \theta)\lambda\mu = (b\theta - (\theta - \eta))\lambda\mu \).
The Classical Risk Model

The Drawdown Process

We get the drawdown process

\[D_t^b = x + \sum_{k=1}^{N_t} b_{T_k} - Y_k - \int_0^t c(b_s) \, ds + (\bar{X}_t^b - \bar{x}) . \]
We get the drawdown process

\[D_t^b = x + \sum_{k=1}^{N_t} b_{T_k} - Y_k - \int_0^t c(b_s) \, ds + (\bar{X}_t^b - \bar{x}) . \]

That is

- jumps upwards, (downwards) deterministic paths
We get the drawdown process

\[D^b_t = x + \sum_{k=1}^{N_t} b_{T_k} - Y_k - \int_0^t c(b_s) \, ds + (\bar{X}^b_t - \bar{x}). \]

That is

- jumps upwards, (downwards) deterministic paths
- reflection in zero
The Drawdown Process

We get the drawdown process

\[D_t^b = x + \sum_{k=1}^{N_t} b_{T_k} - Y_k - \int_0^t c(b_s) \, ds + (\bar{X}_t^b - \bar{x}) . \]

That is

- jumps upwards, (downwards) deterministic paths
- reflection in zero

- we now restrict to \(b_t \in [b^0, 1] \) with \(b^0 = (1 - \eta/\theta) \), such that \(c(b_t) \geq 0 \).
1 **Drawdowns**
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2 **The Classical Risk Model**
 - General Results
 - The Solution
 - Examples

3 **The Diffusion Approximation**
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
With simplified notation, the diffusion approximation to the classical model is \(X_t = \bar{x} - x + \eta t + \sigma W_t \) for some Brownian motion \(W_t \). After reinsurance

\[
X_t^b = \bar{x} - x + \int_0^t \{ b_s \theta - (\theta - \eta) \} \, ds + \sigma \int_0^t b_s \, dW_s.
\]
With simplified notation, the diffusion approximation to the classical model is $X_t = \bar{x} - x + \eta t + \sigma W_t$ for some Brownian motion W. After reinsurance

$$X^b_t = \bar{x} - x + \int_0^t \{ b_s \theta - (\theta - \eta) \} \, ds + \sigma \int_0^t b_s \, dW_s .$$

The drawdown process becomes

$$D^b_t = x - \int_0^t \{ b_s \theta - (\theta - \eta) \} \, ds - \sigma \int_0^t b_s \, dW_s + (\bar{X}^b_t - \bar{x}) .$$
1 Drawdowns
 • Introduction
 • The Classical Risk Model
 • The Diffusion Approximation

2 The Classical Risk Model
 • General Results
 • The Solution
 • Examples

3 The Diffusion Approximation
 • Splitting of the Problem
 • The Solution
 • Value Function and Optimal Strategy
Lipschitz Continuity

Lemma

The function \(V \) is increasing with \(0 \leq V(x) \leq \delta^{-1} \) for all \(x \in [0, \infty) \), fulfils \(\lim_{x \to \infty} V(x) = \delta^{-1} \) and is Lipschitz continuous with

\[
|V(x) - V(y)| \leq \frac{\lambda + \delta}{\delta c(1)} |x - y|.
\]

In particular, \(V \) is absolutely continuous and differentiable almost everywhere.
Proof.

For $0 \leq y < x$ choose a strategy \tilde{b} with $V^{\tilde{b}}(y) < V(y) + \varepsilon$. For initial capital x define $h = (x - y)/c(1)$, $b_t = \tilde{b}_{t-h}$ if $T_1 \wedge t \geq h$ and $b_t = 1$, otherwise. Then

$$V(x) - V(y) - \varepsilon \leq V^b(x) - V^{\tilde{b}}(y)$$

$$\leq \int_0^h e^{-\delta t} \, dt - (1 - e^{-(\lambda+\delta)h}) V^{\tilde{b}}(y) + (1 - e^{-\lambda h}) \delta^{-1}$$

$$\leq (\lambda + \delta) h/\delta = \frac{\lambda + \delta}{\delta c(1)} (x - y),$$
Proof.

For $0 \leq y < x$ choose a strategy \tilde{b} with $V^{\tilde{b}}(y) < V(y) + \varepsilon$. For initial capital x define $h = (x - y) / c(1)$, $b_t = \tilde{b}_{t-h}$ if $T_1 \land t \geq h$ and $b_t = 1$, otherwise. Then

$$V(x) - V(y) - \varepsilon \leq V^b(x) - V^{\tilde{b}}(y)$$

$$\leq \int_0^h e^{-\delta t} \, dt - (1 - e^{-(\lambda+\delta)h})V^{\tilde{b}}(y) + (1 - e^{-\lambda h})\delta^{-1}$$

$$\leq (\lambda + \delta)h / \delta = \frac{\lambda + \delta}{\delta c(1)}(x - y),$$

The other statements are clear.
Splitting of the Problem

Let

\[\vartheta_d = \inf \{ t \geq 0 : D_t \leq d \} , \quad \vartheta^d = \inf \{ t \geq 0 : D_t > d \} \]

be the first entrance times. Then by considering the process until the stopping time

\[
V(x) = \mathbb{E}[e^{-\delta \vartheta_d} V(D_{\vartheta_d})] , \quad x \leq d , \\
V(x) = \mathbb{E}[\delta^{-1}(1 - e^{-\delta \vartheta_d}) + e^{-\delta \vartheta_d} V(d)] , \quad x > d .
\]

We can solve the two problems separately.
1. Drawdowns
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2. The Classical Risk Model
 - General Results
 - The Solution
 - Examples

3. The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
The Solution

Starting in the Critical Area

Problem: Maximise $\mathbb{E}^x[e^{-\delta y_d}]$.
Problem: Maximise $\mathbb{E}^x[e^{-\delta \vartheta_d}]$.

For $x > d$, reaching d one has to pass $y \in (d, x)$. Conclusion: $\mathbb{E}^x[e^{-\delta \vartheta_d}]$ is an exponential function.
Starting in the Critical Area

Problem: Maxmise $\mathbb{E}^{x}[e^{-\delta \vartheta_d}]$.

For $x > d$, reaching d one has to pass $y \in (d, x)$. Conclusion: $\mathbb{E}^{x}[e^{-\delta \vartheta_d}]$ is an exponential function.

For any subinterval of a fixed length, the same quantity has to be maximised. Conclusion: the optimal strategy is constant.
Starting in the Critical Area

Problem: Maximise $\mathbb{E}^x[e^{-\delta y_d}]$.

For $x > d$, reaching d one has to pass $y \in (d, x)$. Conclusion: $\mathbb{E}^x[e^{-\delta y_d}]$ is an exponential function.

For any subinterval of a fixed length, the same quantity has to be maximised. Conclusion: the optimal strategy is constant.

$$V(x) = \delta^{-1} - (\delta^{-1} - V(d))e^{-\gamma(x-d)}$$

where γ is the positive solution to $c(1)\gamma - \lambda\mathbb{E}[1 - e^{-\gamma Y}] = \delta$.
Starting in the Non-Critical Area

Problem: Minimise \(\mathbb{E}[e^{-\delta d} V(D_{\vartheta d})] \) with \(V(d) \) unknown.
Starting in the Non-Critical Area

Problem: Minimise \(\mathbb{E}[e^{-\delta \vartheta} V(D_{\vartheta d})] \) with \(V(d) \) unknown.

Replace \(V(d) \) by \(C \in (0, \delta^{-1}) \), \(V_C(x) = \inf_b \mathbb{E}[e^{-\delta \vartheta} V_C(D_{\vartheta d})] \).

Lemma

There exists \(C_0 \in (0, \delta^{-1}) \) such that \(V_C(d) \gtrless C \) iff \(C \gtrless C_0 \).

It turns out that \(C_0 = V(d) \).
The HJB Equation

Theorem

$V_C(x)$ solves for $x \leq d$ the HJB equation

$$\inf_{b \in [b^0, 1]} \lambda \int_0^\infty V_C(x + by) \, dG(y) - c(b) V'_C(x) - (\lambda + \delta) V_C(x) = 0.$$

Let $b_C(x)$ be a measurable version of the maximiser. Then the strategy $b_C(D^C_t)$ is optimal.
The HJB Equation II

Theorem

$V(x)$ is the unique bounded continuous solution to the HJB equation

$$\inf_{b \in [b^0, 1]} \lambda \int_0^\infty V(x+by) \, dG(y) - c(b)V'(x) - (\lambda + \delta)V(x) = -\mathbb{I}_{x > d}.$$

Let $b(x)$ be a measurable version of the maximiser. Then the strategy $b(D_t^*)$ is optimal.
1. Drawdowns
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2. The Classical Risk Model
 - General Results
 - The Solution
 - Examples

3. The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

Hanspeter Schmidli
University of Cologne
Optimal Drawdowns in Insurance
Exponentially Distributed Claims

Hanspeter Schmidli
University of Cologne
Optimal Drawdowns in Insurance
Exponentially Distributed Claims: No Reinsurance
Exponentially Distributed Claims: Linear Reinsurance
Exponentially Distributed Claims: Optimal Reinsurance
Pareto Distributed Claims

Hanspeter Schmidli
University of Cologne
Optimal Drawdowns in Insurance
Pareto Distributed Claims: No Reinsurance
Pareto Distributed Claims: Linear Reinsurance
Pareto Distributed Claims: Optimal Reinsurance

Hanspeter Schmidli
University of Cologne

Optimal Drawdowns in Insurance
1 Drawdowns
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples

3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
Splitting of the Problem

As for the classical model

\[
V(x) = \mathbb{E}[e^{-\delta \vartheta} V(d)] , \quad x \leq d ,
\]

\[
V(x) = \mathbb{E}[\delta^{-1}(1 - e^{-\delta \vartheta}) + e^{-\delta \vartheta} V(d)] , \quad x > d .
\]

In the critical area \(x > d \) \(b = 1 \) and thus

\[
V(x) = \delta^{-1}\{1 - (1 - \delta V(d))e^{-\kappa(x-d)}\}
\]

for \(\kappa > 0 \) solving \(\frac{1}{2} \sigma^2 \kappa^2 + \eta \kappa = \delta \).
1 Drawdowns
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples

3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
The HJB Equation

Theorem

$V(x)$ is the unique bounded continuously differentiable solution to

$$(\theta - \eta)V'(x) - \delta V(x) + \inf_{b \in [0,1]} \left\{ \frac{1}{2} b^2 \sigma^2 V''(x) - \theta b V'(x) \right\} = -\mathbb{I}_{x > d}.$$

Proof.

Explicit solution to the HJB and verification theorem.
A non-trivial solution must be strictly convex. If \(b \neq 1 \),

\[
\frac{\theta^2 V'(x)^2}{2\sigma^2 V''(x)} + \delta V(x) = (\theta - \eta) V'(x) .
\]

The function \(x \mapsto -\ln V'(x) \) is strictly decreasing with inverse function \(Y \). Thus \(V'(Y(z)) = e^{-z} \). Plugging this into the equation and differentiation leads to differential equation and an explicit solution. There is \(x_0 \in (0, \infty] \) such that

\[
b(x) = \frac{\theta V'(x)}{\sigma^2 V''(x)} \leq 1 , \quad x \in [0, x_0] .
\]

Compound \(V(x) \) on \([0, x_0 \wedge d]\) with the solution with \(b(x) = 1 \) to a smooth solution.
The Behaviour at Zero

Theorem

The strategy $b(D_t^*)$ is optimal. Under the optimal strategy \bar{X}_t^* is constant.
1 Drawdowns
 - Introduction
 - The Classical Risk Model
 - The Diffusion Approximation

2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples

3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy
Value Function and $b(x)$

$\nu(\theta, x)$

$b(\theta, x)$
No Reinsurance
Optimal Reinsurance
References

Thank you for your attention