On the Gross-Mansour-Tucker conjecture

Sergei Chmutov

Ohio State University, Mansfield

Joint work with Fabien Vignes-Tourneret

8th European Congress of Mathematics
Minisymposium: Graphs, Polynomials, Surfaces, and Knots (MS - ID 49)

Monday, June 21, 2021
Definition. A *ribbon graph* G is a surface with boundary represented as the union of two sets of closed topological discs called *vertex-discs* $\mathcal{V}(G)$ and *edge-ribbons* $\mathcal{E}(G)$, satisfying the following conditions:

- the vertex-discs and edge-ribbons intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex-disc and precisely one edge-ribbon;
- every edge-ribbon contains exactly two such line segments.

Example.

![Diagram](image)
Partial duality of ribbon graphs.

$G = e = e' = G \{e\}$

$G = e = e' = G \{e\}$
Partial duality of ribbon graphs.

Type \(pp\)

\[v_1 \neq v_2, f_1 \neq f_2\]

\(g \leftarrow \)

\(g + 1 \rightarrow\)

Type \(uu\)

\[v_1 = v_2, f_1 = f_2\]

Type \(pu\)

\[v_1 \neq v_2, f_1 = f_2\]

\(g \leftarrow \)

Type \(up\)

\[v_1 = v_2, f_1 \neq f_2\]

\(g \leftarrow \)

Sergei Chmutov

On the Gross-Mansour-Tucker conjecture
Gross–Mansour–Tucker conjecture.

GMT-conjecture. *For any ribbon graph there is a subset of edges partial duality relative to which changes the genus.*

The *ribbon-join* (I. Moffatt) $G_1 \lor G_2$ is obtained by gluing together a vertex-disc of G_1 and a vertex-disc of G_2 along some arcs on their boundaries.

$$B_1 = \begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\end{array}
\end{array}, \quad B_2 = \begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\end{array}, \quad B_3 = \begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\end{array}, \quad B_4 = \begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\end{array}, \quad B_5 = \begin{array}{c}
\begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\end{array}, \quad \ldots$$

Theorem. The genus of any partial dual to B_{2n+1} is equal to n.

Definition. A connected ribbon graph G **join-prime** if it cannot be represented as the ribbon-join of two graphs G_1, G_2 with at least one edge-ribbon each: $G \neq G_1 \lor G_2$.
Main result.

Theorem. For any join-prime ribbon graph different from partial duals of B_{2n+1}, there are partial duals of different genus.

Lemma. Let G be a one-vertex join-prime ribbon graph and $e \in E(G)$. Suppose that the genus of partial duals of G stay the same, $g(G) = g(G^A)$ for all subsets $A \subseteq E(G)$. Then

1. e is attached to different face-discs $f_1 \neq f_2$. That is e has to be of Type up.

2. Any edge-ribbon interlaced with e is attached to the same face-discs f_1 and f_2.

3. Any edge-ribbon not interlaced with e is attached to a pair of face-discs different from $\{f_1, f_2\}$.
Proof.

The non-orientable counterpart of the GMT conjecture.

- Maya Thompson (Royal Holloway University of London).

The only non-orientable join-prime ribbon graph whose partial duals have the same Euler genus is the one-vertex ribbon graph with one twisted edge.
THANK YOU!!!