Agenda

<table>
<thead>
<tr>
<th></th>
<th>Definition and use of internal models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Model calibration</td>
</tr>
<tr>
<td>3</td>
<td>Testing the various model components</td>
</tr>
<tr>
<td>4</td>
<td>Stress testing as a way to check the validity of the model</td>
</tr>
<tr>
<td>5</td>
<td>Reverse stress test another way to look at the quality of the model</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
What Is an Internal Model?

- An internal model is here to assess **the risk** of the economic balance sheet of the company

Validation here means answering the question: **Does our model predict correctly the future risk?**
Internal Model Developments

Validation: Are our assumptions and models describing well the risks?

Validation: Are our implementation and processes good enough to ensure the quality of the results?
Historical Evolution of Internal Models

- **Mortality Tables** ~1860
- **De Finetti** 1940
- **Risk Based Solvency** 1995-2000
- **Capital Management** ~2005

Collection of sub models quantifying parts of the risks

Quantification of different risk types with portfolio effects

Risk types are combined to arrive at the company’s total risk

Modelling of underlying risk drivers and emphasize on the whole distribution

- **Financial Instruments**
- **Portfolio Data**
- **Internal Group Retro (IGR)**
- **Management Strategy**

Distributional and Dependency Assumptions

Risk types are combined to arrive at the company’s total risk

- **Financial Instruments**
- **Portfolio Data**
- **Internal Group Retro (IGR)**
- **Management Strategy**

Scenarios

Modelling of underlying risk drivers and emphasize on the whole distribution

- **Valuation Engine**
- **Balance Sheet**
- **Profit and Loss**

Slide inspired by Philipp Keller

Internal Risk Models: Applications and Benefits

- Investment Strategy
- Profitability Analysis
- RAC Allocation
- "What-if" Analysis
- Supervisors
- Rating Agencies
- Risk Mitigation, RI Optimization

Key Areas:
- ALM
- Planning
- Solvency
- Risk Management
- Testing
Agenda

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition and use of internal models</td>
</tr>
<tr>
<td>2</td>
<td>Model calibration</td>
</tr>
<tr>
<td>3</td>
<td>Testing the various model components</td>
</tr>
<tr>
<td>4</td>
<td>Stress testing as a way to check the validity of the model</td>
</tr>
<tr>
<td>5</td>
<td>Reverse stress test another way to look at the quality of the model</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Calibration Is the First Step
Towards a Good Model

- Any model needs to *determine few parameters*. These parameters are set looking at data of the underlying process and fitting them to these data.

- The pricing and reserving actuaries develop their model based on *statistical tests* on claims data.

- The model is composed of *probabilistic models* for the various risk drivers but also to model for the *dependence* between those risks.

- Both components need to be calibrated. The most difficult part being to find the right dependence between risks because this requires lots of data, particularly when there is only dependence in the tails.

- The probabilistic models are usually calibrated with *claims data* for the liabilities and with *market data* for the assets, or with *stochastic models* like natural catastrophes, pandemic or credit models.
How to Calibrate Dependences?

Dependences can hardly be described by one number such as a linear correlation coefficient.

We generally use copulas to model dependences.

In insurance, there is often not enough liability data to estimate the copulas.

Nevertheless, copulas can be used to translate an expert opinion about dependences in the portfolio into a model of dependence:

- Select a copula with an appropriate shape
 - increased dependences in the tail
 - this feature is observable in historic insurance loss data

- Try to estimate conditional probabilities by asking questions such as “What about risk Y if risk X turned very bad?”
 - Think about adverse scenarios in the portfolio
 - Look at causal relations between risks
Strategy for Modeling Dependences

- Using the knowledge of the underlying business to aggregate multiple risks, develop a *hierarchical model for dependences* in order to reduce the parameter space and describe more accurately the main sources of dependent behavior.

- Once we have determined the structure of dependence for each node there are two possibilities:
 1. If we know a *causal dependence*, we model it *explicitly*.
 2. Otherwise, we systematically use *non-symmetric copulas* (ex. Clayton copula) in presence of *tail dependence*.

- To calibrate the various nodes, we have again two possibilities:
 1. If there is enough data, we calibrate statistically the parameters.
 2. In absence of data, we use *stress scenarios and expert opinion* to estimate conditional probabilities.

- For the purpose of *eliciting expert opinion* (on common risk drivers, conditional probabilities, bucketing...), we have developed a Bayesian method combining various sources of information in the estimation: PrObEx.
PrObEx: Combining Three Sources of Information

PrObEx* is a new methodology developed to ensure the prudent calibration of dependencies within and between different insurance risks.

PrObEx is based on a Bayesian model that allows to combine up to three sources of information:

- Prior information (i.e. indications from regulators or previous studies)
- Observations (i.e. the available data)
- Experts’ opinions (i.e. the knowledge of the experts)

We invite experts to a Workshop where they are asked to assess dependencies within their Line of Business.

PrObEx: Combining Expert Judgments

Example: three experts estimate $\Pr[X \geq \text{VaR}_{99\%}(X)|Y \geq \text{VaR}_{99\%}(Y)]$

Given these three judgements, PrObEx combines them into a unique, more accurate, estimate.
PrObEx: Combining Up to Three Sources of Information

PrObEx combines the three sources to provide SCOR with the finest estimate for dependence parameters.
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Definition and use of internal models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Model calibration</td>
</tr>
<tr>
<td>3</td>
<td>Testing the various model components</td>
</tr>
<tr>
<td>4</td>
<td>Stress testing as a way to check the validity of the model</td>
</tr>
<tr>
<td>5</td>
<td>Reverse stress test another way to look at the quality of the model</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
The Important Components of Internal Models

- Every internal model contains *important components* that will condition the results:
 - An economic scenario generator
 - A model for the uncertainty of P&C reserving triangles
 - A model for natural catastrophes
 - A model for pandemic (if there is a life book)
 - A model for credit risk
 - A model for operational risk
 - A model for risk aggregation (dependence)

- Each of these components can be *tested independently*, to check the validity of the methods employed

- These tests vary from one component to the other. Each requires its *own approach for testing*
Testing the quality of ESG scenarios (1/2)

- The ESG produces many scenarios, i.e. many different “forecast” values
- Thousands of scenarios together define forecast distributions
- Back testing: How well did known variable values fit into their prior forecast distributions?
- Testing Method: Probability Integral Transform (PIT), (Diebold et al. 1998, 1999). Determine the cumulative probability of a real variable value, given its prior forecast distribution
- We need to define two samples for this:
 - an in-sample period for building the bootstrap method with its innovation vectors and parameter calibrations (e.g. GARCH parameters)
 - An out-of-sample period starts at the end of the in-sample period and is used to test the generated distributions
The PIT method is used as follows:

- The scenario forecasts of a variable x at time t_i, sorted in ascending order, constitute an empirical distribution forecast, $F_i(x)$

- For a set of out-of-sample time points, t_i, we now have a distribution forecast, $F_i(x)$, as well as a historically observed value, x_i

- The cumulative distribution $F_i(x)$ is then used for the following PIT: $Z_i = F_i(x_i)$

- A proposition proved by Diebold et al. 1998* states that the Z_i are i.i.d. with a uniform distribution $U(0,1)$ if the conditional distribution forecast $F_i(x)$ coincides with the true process by which the historical data have been generated

- If the series Z_i significantly deviates from either the $U(0,1)$ distribution or the i.i.d property, the model does not pass the out-of-sample test

The ESG Scenarios Withstood the Test of the Financial Crisis of 2008

Example: Cumulative distribution computed in 30.06.2007 for 31.03.2009

Quarterly return: -8.98%
ESG: p = 5.68%
Gaussian: p = 5.25%

The occurrence probability of such a return was forecasted as
ESG: 1 over 4.8 years
Gaussian: 1 over 5.3 years
The One Year Change of P&C Reserving Triangles

- Modelling the uncertainty of P&C reserving triangles is an important component of internal models.

- Testing the quality of the model to compute the one year change is also part of validating a model.

- One way of doing it, is to design stochastic models to reach the ultimate that can then be used to test the methods.

- We have done this with simple stochastic models for reaching the ultimate* that allow for explicit formulae:
 1. An additive model
 2. A multiplicative model.

Testing the one year change (1/2)

- The additive model is not suited for the Merz-Wüthrich method:

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>MAD</th>
<th>MRAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>18.37</td>
<td>3.92</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>COT*, no jumps</td>
<td>19.08</td>
<td>3.93</td>
<td>0.71</td>
<td>4.14%</td>
</tr>
<tr>
<td>COT, jumps</td>
<td>18.81</td>
<td>3.86</td>
<td>0.43</td>
<td>2.47%</td>
</tr>
<tr>
<td>Merz-Wüthrich</td>
<td>252.89</td>
<td>149.6</td>
<td>234.5</td>
<td>1’365%</td>
</tr>
</tbody>
</table>

- The “mean” in the table is the capital standalone
- The reserves in this model are 101.87
- Capital intensity typical of the Standard Formula
Testing the one year change (2/2)

- The multiplicative model is better suited for chain ladder and Merz-Wüthrich

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>MAD</th>
<th>MRAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>29.36</td>
<td>21.97</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>COT, no jumps</td>
<td>26.75</td>
<td>19.84</td>
<td>2.54</td>
<td>8.19%</td>
</tr>
<tr>
<td>COT, jumps</td>
<td>28.30</td>
<td>20.98</td>
<td>1.07</td>
<td>3.48%</td>
</tr>
<tr>
<td>Merz-Wüthrich</td>
<td>22.82</td>
<td>15.77</td>
<td>12.7</td>
<td>43.2%</td>
</tr>
</tbody>
</table>

- The results show that all the models underestimate the capital
Testing the dependence model: SCR depends crucially on the right dependence model

- Using the wrong dependence model will lead to either an underestimation of the SCR (by neglecting the dependence in the tails) or an overestimation of the SCR (by fitting a correlation to a tail dependence as the Standard Formula does).

- We tested this by comparing statistics stemming from a 16-leaves full binary tree, when switching from lognormal(0,1) marginals and Flipped Clayton copulas with parameter $\theta = 1.36$, to Gaussian copulas calibrated either all in the extreme (same Quantile Exceedance Probability at 99.5%: “tail correlation”) or on the whole linear dependence (same “Spearman correlation” coefficient 0.57).

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Capital Ratio* Gauss/Clayton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson correlation</td>
<td>0.64</td>
</tr>
<tr>
<td>Tail correlation</td>
<td>1.06</td>
</tr>
</tbody>
</table>

*) We compute the ratio of the $\text{VaR}_\alpha(99.5\%) / \text{VaR}_\alpha(99.5\%)$.
Testing the Convergence of Monte Carlo Simulations

- We have developed a method to obtain explicit formulae for aggregated Pareto distributed risks linked by Clayton copula*

- We use the results to test the convergence of the Monte Carlo simulations as a function of the parameters

- We compute both the TVaR for the aggregated risks and the diversification benefit of n dependent risks X_i:

 $$D = 1 - \frac{\rho(\sum_{i=1}^{n} X_i)}{\sum_{i=1}^{n} \rho(X_i)}$$

- We see that when the tail is very heavy the simulations do not really converge

Convergence of Diversification Benefit

The convergence is very good for $\alpha = 2$ and 3 and it does not converge for $\alpha = 1.1$.

- $\alpha = 1.1, \vartheta = 0.91$
- $\alpha = 2, \vartheta = 0.5$
- $\alpha = 3, \vartheta = 1/3$
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Definition and use of internal models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Model calibration</td>
</tr>
<tr>
<td>3</td>
<td>Testing the various model components</td>
</tr>
<tr>
<td>4</td>
<td>Stress testing as a way to check the validity of the model</td>
</tr>
<tr>
<td>5</td>
<td>Reverse stress test another way to look at the quality of the model</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Is It Possible to Statistically Test Internal Models?

- RAC is computed for a probability of 1% or 0.5%, which represents a 1/100 or 1/200 years event.

- In most of the insured risks, such an event *has never been observed* or has been observed only once.

- This means that the tails of the distributions *have to be inferred* from data from the last 10 to 30 years in the best cases.

- The 1/100 years RAC is thus based on a *theoretical estimate* of the shock size.

- It is considered more as the *rule of the game* than as a realistic risk cover.

- It is a *compromise* between pure betting and not doing anything because we cannot statistically estimate it.
Stress Testing the Models Is Crucial

- Testing the output of internal models is thus a must to gain confidence in its results and to understand its limitations.

- We just saw that it is difficult, or even impossible, to statistically test the model. We can only stress test it.

- There are at least four ways of stress testing the models:
 1. Test the sensitivity to parameters (sensitivity analysis)
 2. Test the predictions against real outcomes (historical test, via P&L attribution for lines of business (LoB) and assets)
 3. Test the model against scenarios
 4. Study the reasonableness of the extreme scenarios of the Monte-Carlo simulations (reverse stress-test)
Testing Stochastic Models With Scenarios

- Scenarios can be seen as *thought experiments* about possible future world situations
- Scenarios are different from sensitivity analysis where the impact of a (small) change to a single variable is evaluated
- *Scenario results* can be *compared to simulation results* in order to assess the probability of the scenarios in question
- By comparing the probability of the scenario given by the internal model to the expected frequency of such a scenario, we can assess whether the internal model is realistic and has really taken into account enough dependencies between risks
- By studying the extreme outcomes of the Monte-Carlo simulations, it is possible to determine their plausibility
The Worst Scenario Should Be Absorbed by the Buffer

In € million, net of retro

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability in years</th>
<th>Expected Change in Economic Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Fraud in largest C&S exposure</td>
<td>1 in 100</td>
<td>150</td>
</tr>
<tr>
<td>US hurricane</td>
<td>1 in 100</td>
<td>200</td>
</tr>
<tr>
<td>EU windstorm</td>
<td>1 in 100</td>
<td>200</td>
</tr>
<tr>
<td>Japan earthquake</td>
<td>1 in 250</td>
<td>200</td>
</tr>
<tr>
<td>Terrorism Wave of attacks</td>
<td>1 in 100</td>
<td>445</td>
</tr>
<tr>
<td>Long term mortality deterioration</td>
<td>1 in 200</td>
<td>520</td>
</tr>
<tr>
<td>Global pandemic</td>
<td>1 in 200</td>
<td>650</td>
</tr>
<tr>
<td>Severe adverse development in reserves</td>
<td>1 in 500</td>
<td>700</td>
</tr>
</tbody>
</table>
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Definition and use of internal models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Model calibration</td>
</tr>
<tr>
<td>3</td>
<td>Testing the various model components</td>
</tr>
<tr>
<td>4</td>
<td>Stress testing as a way to check the validity of the model</td>
</tr>
<tr>
<td>5</td>
<td>Reverse stress test another way to look at the quality of the model</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Making Full Use of Monte Carlo Simulations

- Stochastic models produce many simulations at each run. These outputs can be put at use to understand the way the model works.

- We select the *worst cases* and look at what are the scenarios that make the company bankrupted. Two questions to ask on these scenarios:
 1. Is this scenario *credible* given the company portfolio?
 2. Are there other possible scenarios that do not appear in the worst Monte Carlo simulations?

- This is typically the kind of *reverse back testing* that can be done on the simulations.

- Other tests are also interesting like *looking at conditional statistics*. A typical question would for instance be: how is the capital going to behave if interest rises?
Reverse Stress Test: Testing the Output of Internal Models

- Internal models generate a huge quantity of data. Usually little of these data is used: some averages for computing capital and some expectations.

- Exploring the dependence of results to certain important variables is a very good way to test the reasonableness of the model.

- In the next few slides, we present regression plots, which show the dependency between interest rates and change in economic value (of certain LoB’s).

- The plots are based on the full 100’000 scenario’s of the Group Internal Model (GIM).

- By analyzing, the internal model results on this level, we can follow up on a lot of effects and test if they make sense.
Change of Company Value Versus the 4Y EUR Gov.

- 4Y is the typical duration of the P&C portfolio

- As interest rate grows the Value of the company slightly decreases (due to an increase in inflation linked to IR increase)
Motor Business versus 5Y EUR Gov. Bond Yield

- The value of motor business depends only very weakly on interest rate as it is relatively short tail
Professional Liability (Long Tail) versus 5Y GBP Gov. Bond Yield

- The value of professional liability business depends heavily on interest rate as it takes a long time to develop to ultimate and the reserve can earn interest for a longer time.
Gov. Bond Assets versus 4Y EUR Gov. Bond Yield

- Bond value depends mechanically on interest rate. When interest rate increases the value decreases.
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Definition and use of internal models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Model calibration</td>
</tr>
<tr>
<td>3</td>
<td>Testing the various model components</td>
</tr>
<tr>
<td>4</td>
<td>Stress testing as a way to check the validity of the model</td>
</tr>
<tr>
<td>5</td>
<td>Reverse stress test another way to look at the quality of the model</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Conclusions (1/2)

- The development of risk models helps to improve risk awareness and anchors risk management and governance deeper in industry practices.

- Risk models provide valuable assessments, especially in relative terms, as well as guidance in business decisions.

- It is thus essential to ensure that the results of the model delivers a good description of reality.

- IR Model Validation is the way to gain confidence in the model.

- It is however difficult because there is no straightforward way of testing the output of a model.
Conclusion (2/2)

Validating a risk model requires the use of various strategies*:

- Ensure a *good calibration* of the model through various statistical techniques
- Use data to *test statistically certain parts* of the model (like the computation of the risk measure, or some particular model like ESG or Reserving Risk)
- Test the P&L attribution to LoB’s against real outcome
- Test the *sensitivity* of the model to *crucial parameters*
- Compare the model output to *stress scenarios*
- Compare the *real outcome* to its *predicted probability* by the model
- Examine the simulation output to check the quality of the bankruptcy scenarios (*reverse backtest*)