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Definition

The Roe algebra C*(X) is the norm closure of all finite propaga-
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(T, R(EPWM))) =, T

» Application in Index Theory such as coarse Baum-Connes con-
jecture and Novikov conjecture.
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» E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
IfX ~. Y, then C*(X) = C*(Y)

» Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.
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@ When ¢, = ¢ > 0, we call it Measured expanders.

@ When ¢, = ¢ > 0 and m,, = counting measure on finite graphs
V., we recover Expander graphs: 3¢ > 0V nandV A C X, with
0 < A] < §|V,l, then |0A] > clAl.
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@ Structure theorem: Measured asymptotic expanders can be "nicely”
approximated by measured expander graphs (V,, E,;, m,) with bounded
measure ratios (i.e. If u ~g, vin V,, then s - m,(v) < m,(u) < ’"T(V)
forsome 0 < s < 1).

o (V,, E,, m,;) may not come from any reversible random walk. How-
ever, we construct v, st (V,, E,, v,) has a reversible random walk,
and v,, and m,, control each other.

@ The associated Laplacian operator A, € C*(X) to (V,,, E,,, v,) has
spectral gap at 0 in the spectrum. So Q, = x(0(A,) € C*(X) and
0, — P up to a compact perturbation. Hence, P € C*(X).
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the rigidity holds.

Corollary (L-Spakula-Zhang, 2020)

There exist metric spaces that do not coarsely embed into any L”-
space for 1 < p < oo, but the rigidity still holds.
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