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Roe algebras

I Let (X, d) be a countable and discrete metric space with bounded
geometry (i.e. supx∈X |B(x,R)| < ∞ for all R > 0, where B(x,R)
denotes the closed ball). E.g. fin. gen. groups Γ with word metrics.

I A bounded linear operator T ∈ B(`2(X, `2(N))) can be written in
the matrix form {Tx,y}x,y∈X where Tx,y ∈ B(`2(N)) defined by Tx,yξ =

(T(δy ⊗ ξ))(x) for ξ ∈ `2(N).
Say that T has finite propagation if ∃ R > 0 such that ∀ x, y ∈ X

with d(x, y) > R then Tx,y = 0;
Say that T is locally compact if each Tx,y is compact.

Definition
The Roe algebra C∗(X) is the norm closure of all finite propaga-
tion and locally compact operators in B(`2(X; `2(N))). E.g. C∗(Γ) �
`∞(Γ,K(`2(N))) or Γ.

I Application in Index Theory such as coarse Baum-Connes con-
jecture and Novikov conjecture.
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Roe algebras are coarsely invariant

I A map f : (X, dX) −→ (Y , dY ) is a coarse equivalence (X ∼c Y) if

f coarse embedding from X into Y: ∃ ρ+, ρ− : [0,∞)→ [0,∞)
with lim

t→∞
ρ±(t) = +∞ s.t. ∀ x1, x2 ∈ X we have

ρ−
(
dX(x1, x2)

)
≤ dY

(
f (x1), f (x2)

)
≤ ρ+

(
dX(x1, x2)

)
;

f (X) is co-bounded in Y: ∃ C > 0 such that ∀ y ∈ Y ,∃ x ∈ X
with dY (y, f (x)) ≤ C.

I E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
If X ∼c Y, then C∗(X) � C∗(Y).

I Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.



Roe algebras are coarsely invariant

I A map f : (X, dX) −→ (Y , dY ) is a coarse equivalence (X ∼c Y) if

f coarse embedding from X into Y: ∃ ρ+, ρ− : [0,∞)→ [0,∞)
with lim

t→∞
ρ±(t) = +∞ s.t. ∀ x1, x2 ∈ X we have

ρ−
(
dX(x1, x2)

)
≤ dY

(
f (x1), f (x2)

)
≤ ρ+

(
dX(x1, x2)

)
;

f (X) is co-bounded in Y: ∃ C > 0 such that ∀ y ∈ Y ,∃ x ∈ X
with dY (y, f (x)) ≤ C.

I E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
If X ∼c Y, then C∗(X) � C∗(Y).

I Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.



Roe algebras are coarsely invariant

I A map f : (X, dX) −→ (Y , dY ) is a coarse equivalence (X ∼c Y) if

f coarse embedding from X into Y: ∃ ρ+, ρ− : [0,∞)→ [0,∞)
with lim

t→∞
ρ±(t) = +∞ s.t. ∀ x1, x2 ∈ X we have

ρ−
(
dX(x1, x2)

)
≤ dY

(
f (x1), f (x2)

)
≤ ρ+

(
dX(x1, x2)

)
;

f (X) is co-bounded in Y: ∃ C > 0 such that ∀ y ∈ Y ,∃ x ∈ X
with dY (y, f (x)) ≤ C.

I E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
If X ∼c Y, then C∗(X) � C∗(Y).

I Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.



Roe algebras are coarsely invariant

I A map f : (X, dX) −→ (Y , dY ) is a coarse equivalence (X ∼c Y) if

f coarse embedding from X into Y: ∃ ρ+, ρ− : [0,∞)→ [0,∞)
with lim

t→∞
ρ±(t) = +∞ s.t. ∀ x1, x2 ∈ X we have

ρ−
(
dX(x1, x2)

)
≤ dY

(
f (x1), f (x2)

)
≤ ρ+

(
dX(x1, x2)

)
;

f (X) is co-bounded in Y: ∃ C > 0 such that ∀ y ∈ Y ,∃ x ∈ X
with dY (y, f (x)) ≤ C.

I E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
If X ∼c Y, then C∗(X) � C∗(Y).

I Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.



Roe algebras are coarsely invariant

I A map f : (X, dX) −→ (Y , dY ) is a coarse equivalence (X ∼c Y) if

f coarse embedding from X into Y: ∃ ρ+, ρ− : [0,∞)→ [0,∞)
with lim

t→∞
ρ±(t) = +∞ s.t. ∀ x1, x2 ∈ X we have

ρ−
(
dX(x1, x2)

)
≤ dY

(
f (x1), f (x2)

)
≤ ρ+

(
dX(x1, x2)

)
;

f (X) is co-bounded in Y: ∃ C > 0 such that ∀ y ∈ Y ,∃ x ∈ X
with dY (y, f (x)) ≤ C.

I E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
If X ∼c Y, then C∗(X) � C∗(Y).

I Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.



Roe algebras are coarsely invariant

I A map f : (X, dX) −→ (Y , dY ) is a coarse equivalence (X ∼c Y) if

f coarse embedding from X into Y: ∃ ρ+, ρ− : [0,∞)→ [0,∞)
with lim

t→∞
ρ±(t) = +∞ s.t. ∀ x1, x2 ∈ X we have

ρ−
(
dX(x1, x2)

)
≤ dY

(
f (x1), f (x2)

)
≤ ρ+

(
dX(x1, x2)

)
;

f (X) is co-bounded in Y: ∃ C > 0 such that ∀ y ∈ Y ,∃ x ∈ X
with dY (y, f (x)) ≤ C.

I E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition
If X ∼c Y, then C∗(X) � C∗(Y).

I Roe algebras are coarsely invariant: they contain coarse geomet-
ric information of the underlying spaces.



Rigidity problems

I The rigidity problems concern the opposite direction, i.e., to what
extent can Roe algebras determine the coarse geometry of the un-
derlying spaces.

More precisely, we ask the following:

Question
When C∗(X) � C∗(Y)⇒ X ∼c Y?

Špakula-Willett (2013): If either X or Y has Yu’s property A, then
the rigidity holds.

Braga-Farah (2018), Braga-Farah-Vignati (2019), Braga-Chung-L
(2019): If all sparse subspaces of X (or Y) yield only compact
ghost projections in their Roe algebras, then the rigidity holds.

I A subspace Y in a metric space (X, d) is sparse if Y =
⊔

n Yn

where each Yn is finite and d(Yn,Ym)→ ∞ as n+m→ ∞ and n , m.
I T ∈ B(`2(X; `2(N))) is a ghost if ‖Tx,y‖B(`2(N)) → 0 as x, y→ ∞.



Rigidity problems

I The rigidity problems concern the opposite direction, i.e., to what
extent can Roe algebras determine the coarse geometry of the un-
derlying spaces. More precisely, we ask the following:

Question
When C∗(X) � C∗(Y)⇒ X ∼c Y?
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Analytic criterion

If all sparse subspaces of X contain no block-rank-one ghost
projections in their Roe algebras, then the rigidity holds. [L-Špakula-
Zhang, 2020]

Definition
Let (X, d) =

⊔
n(Xn, dn) be a sparse space. A projection P ∈

B(`2(X; `2(N))) is called a block-rank-one projection if

P =
⊕

n

Pn,

where Pn = (·, ξn)ξn is a rank-one projection in B(`2(Xn; `2(N))).

I The associated probability measure mn on Xn given by mn({x}) :=
‖ξn(x)‖2

`2(N) for each x ∈ Xn. Hence we obtain a sequence of finite
probability metric spaces {(Xn, dn,mn)}n.
I P is a ghost iff {(Xn, dn,mn)}n is ghostly (i.e. lim

n
supx∈Xn

mn(x) = 0).
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Theorem (L-Špakula-Zhang, 2020)

Let P ∈ B(`2(X; `2(N))) be a block-rank-one projection and mn the
associated measure on Xn. Then P ∈ C∗(X) iff {(Xn, dn,mn)}n is a
sequence of measured asymptotic expanders.

Definition (L-Vigolo-Zhang, 2019)

A sequence of finite probability metric spaces {(Xn, dn,mn)}n is
called measured asymptotic expanders if ∀ α ∈ (0, 1

2 ], ∃ cα > 0
and Rα > 0 such that ∀ n and ∀ A ⊂ Xn with α ≤ mn(A) ≤ 1

2 , then
mn(∂RαA) > cαmn(A) (where ∂RαA = {x ∈ Xn \ A : dn(x,A) ≤ Rα}).

When cα ≡ c > 0, we call it Measured expanders.

When cα ≡ c > 0 and mn = counting measure on finite graphs
Vn, we recover Expander graphs: ∃ c > 0 ∀ n and ∀ A ⊂ Xn with
0 < |A| ≤ 1

2 |Vn|, then |∂A| > c|A|.
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Outline of the proof

Structure theorem: Measured asymptotic expanders can be ”nicely”
approximated by measured expander graphs (Vn,En,mn) with bounded
measure ratios (i.e. If u ∼En v in Vn, then s · mn(v) ≤ mn(u) ≤ mn(v)

s
for some 0 < s < 1).

(Vn,En,mn) may not come from any reversible random walk. How-
ever, we construct νn st (Vn,En, νn) has a reversible random walk,
and νn and mn control each other.

The associated Laplacian operator ∆n ∈ C∗(X) to (Vn,En, νn) has
spectral gap at 0 in the spectrum. So Qn = χ{0}(∆n) ∈ C∗(X) and
Qn → P up to a compact perturbation. Hence, P ∈ C∗(X).
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Theorem (L-Špakula-Zhang, 2020)
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Corollary (L-Špakula-Zhang, 2020)
There exist metric spaces that do not coarsely embed into any Lp-
space for 1 ≤ p < ∞, but the rigidity still holds.
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Thank you for your attention!


