First order Mean Field Games on networks

Claudio Marchi

University of Padova

work in progress with: Y. Achdou, P. Mannucci and N. Tchou
Outline

- A brief introduction to Mean Field Games
- Definition of networks
- A MFG problem on networks with control on the velocity
- Work in progress: control on the acceleration (with/without constraint on the control)
A brief introduction to Mean Field Games

The Mean Field Games (MFG) theory was proposed by Lasry-Lions, and independently by Huang-Malhamé-Caines, in 2006 for modelization of interactions among a very large (“infinite”) number of agents when individual actions are related to mass behaviour and vice versa.

Applications: financial markets, fashion trends, pedestrian or vehicular traffic...

Distinctive features of the model:

- The agents are influenced only by the average behaviour of all other players (in analogy with Statistical Mechanics).
- The agents are rational: they choose a strategy so to minimize a cost.
- The agents are indistinguishable.
- The agents are individually neglectable: a single agent by itself cannot influence the collective behaviour.
Consider a game with N players. The i-th player’s dynamics is

$$dX_s^i = \alpha_s^i ds + \sqrt{2\nu} dW_s^i, \quad X_t^i = x \in \mathbb{R}^n$$

where $\nu \geq 0$, W^i are independent Brownian motions, while α^i is the control chosen so to minimize the cost functional

$$E \left\{ \int_t^T \left[\frac{|\alpha_s^i|^2}{2} - \ell(X_s^i, s) + F\left[\frac{1}{N-1} \sum_{j \neq i} \delta X_s^j \right](X_s^i) \right] ds \right. + G\left[\frac{1}{N-1} \sum_{j \neq i} \delta X_T^j \right](X_T^i) \right\}.$$

The Nash equilibria are characterized by a system of $2N$ equations. Nevertheless, as $N \to +\infty$, this system reduces to the following one:
The first equation is a backward-in-time Hamilton-Jacobi(-Bellman) equation describing the expected value for a generic player.

The second equation is a forward-in-time Fokker-Planck/continuity equation describing the density \(m \) of the players.

Three couplings occur between the equations.
Variants / other applications

- the costs F and G may depend on m in a local/nonlocal way;
- infinite horizon problem;
- dominant single player versus a population of small players;
- several populations of identical agents;
- cost depending on the velocity of other players and not on their positions;
- penalization of mass concentration;
- all players follow the same feedback law (Mean Field Type Control);
- the generic agent controls its acceleration (and $\nu = 0$);
- the agents’ positions are constrained in a closed subset of \mathbb{R}^n.
First order case, i.e. $\nu = 0$

\[
\begin{align*}
\text{(HJ)} & \quad -\partial_t u + \frac{1}{2} |\nabla u|^2 + \ell(t, x) = F[m(t)](x) \quad (t, x) \in (0, T) \times \mathbb{R}^n \\
\text{(C)} & \quad \partial_t m + \text{div} (m \nabla u) = 0 \quad (t, x) \in (0, T) \times \mathbb{R}^n \\
& \quad u(T, x) = G[m(T)](x) \quad x \in \mathbb{R}^n \\
& \quad m(0, x) = m_0(x) \quad x \in \mathbb{R}^n
\end{align*}
\]

Definition

$$(u, m) \in W_{1,\infty}^1([0, T] \times \mathbb{R}^n) \times C([0, T]; \mathcal{P}_1(\mathbb{R}^n))$$ is a solution if:

- (HJ)-equation is satisfied by u in the viscosity sense
- (C)-equation is satisfied by m in the sense of distributions.
Theorem (Cardaliaguet - PL Lions)

1. The MFG system has a solution \((u, m)\);
2. \(m(x, s) = \Phi(x, 0, s)\# m_0(x)\), where \(\Phi\) is the flow of the dynamics

\[
x'(s) = -\nabla u(x(s), s), \quad x(0) = x.
\]

Ingredients of the proof

i) for a.e. \(x\), optimal trajectories may bifurcate only at initial time;

ii) the optimal controls are bounded uniformly w.r.t. \(x\);

iii) the value function is Lipschitz continuous and semiconcave;

iv) for a.e. \(x\), system (1) describes the (unique) optimal trajectory of the optimal control problem;

v) Schauder fixed point theorem.
Literature for 1st order MFG

- **MFG on Euclidean spaces**
 - \textit{classical approach}
 - P.L. Lions’ lectures at Collège de France 2012 - Cardaliaguet “Notes on Mean Field Games”
 - Cardaliaguet, DGA 2013
 - Gomes-Pimentel-Voskanyan, SpringerBrief 2016
 - \textit{Lagrangian approach}
 - Benamou-Carlier-Santambrogio, Springer 2016
 - Cannarsa-Capuani, Springer-Indam 28, 2018
 - Mazanti-Santambrogio, M3AS 2019

- **MFG on discrete sets**
 - Gomes-Mohr-Souza, JMPA 2010
 - Gomes-Mohr-Souza, AMO 2013
 - Guéant, AMO 2015

- **MFG on networks (all for 2nd order case)**
 - Camilli-M., SIAM JCO 2016
 - Achdou-Dao-Ley-Tchou, NHM 2019
 - Achdou-Dao-Ley-Tchou, CVPDE 2020
A network is a connected, embedded in \mathbb{R}^n, set \mathcal{N} and it is formed by a set of vertices $V := \{v_i\}_{i \in I}$ and a set of regular edges $E := \{e_j\}_{j \in J}$. We assume that the network is compact and without boundary.

(a) An example of network
\textbf{Notations}

- $\text{Inc}_i := \{ j \in J : e_j \text{ incident to } v_i \in V \}$.
- Any edge e_j is parametrized by a smooth function $\pi_j : [0, l_j] \rightarrow \mathbb{R}^n$.
 For a function $u : \mathcal{N} \rightarrow \mathbb{R}$ we denote by $u_j : [0, l_j] \rightarrow \mathbb{R}$ its restriction to e_j, i.e. $u(x) = u_j(y)$ for $x \in e_j$, $y = \pi_j^{-1}(x)$.
- The \textit{derivative} is considered w.r.t. the parametrization.
- In $v_i \in V$, the \textbf{oriented derivative} of u is

$$\partial_j u(v_i) := \begin{cases}
\lim_{h \to 0^+} [u_j(h) - u_j(0)]/h, & \text{if } v_i = \pi_j(0) \\
\lim_{h \to 0^+} [u_j(l_j - h) - u_j(l_j)]/h, & \text{if } v_i = \pi_j(l_j)
\end{cases}$$

and $D_x u(v_i) := (\partial_j u(v_i))_{j \in \text{Inc}_i}$.
Dynamics of a generic player

The state of a generic player is constrained in the network and, when it is inside an edge \(e_j \), it obeys to

\[
x'(t) = \alpha(t)
\]

where \(\alpha \) is the control.

Cost for the generic player

The generic player aims at choosing \(\alpha \in L^2 \) so to minimize the cost

\[
J(x, t, \alpha) = \int_t^T \left[\frac{|\alpha(s)|^2}{2} - \ell(x(s), s) + F[m(s)](x(s)) \right] ds
\]

\[
+ G[m(T)](x(T))
\]

where \(m(s) \) is the distribution of the whole population at time \(s \).
Notations

- \(\Gamma = AC(0, T; \mathcal{N}) \)
- \(\Gamma[x] = \{ \gamma \in \Gamma : \gamma(0) = x \} \)
- \(\mathcal{P}(\Gamma) = \{ \text{Borel probability measures on } \Gamma \} \)
- \(\forall t \in [0, T], \text{ the evaluation map is } e_t : \Gamma \to \mathcal{N} \text{ with } e_t(\gamma) = \gamma(t) \)
- \(\mathcal{P}_{m_0}(\Gamma) = \{ \eta \in \mathcal{P}(\Gamma) : e_0\#\eta = m_0 \} \)
- for each \(\eta \in \mathcal{P}_{m_0}(\Gamma) \), we set

\[
J^n(t, x, \alpha) = \int_t^T \left[\frac{|\alpha(s)|^2}{2} - \ell(\gamma(s), s) + F[e_s\#\eta](\gamma(s)) \right] ds \\
+ G[e_T\#\eta](\gamma(T))
\]

where \(\gamma(t) = x \) and \(\gamma' = \alpha \) and

\[
\Gamma^n[x] = \{ \gamma \in \Gamma[x] : J^n(0, x, \gamma') \leq J^n(0, x, \tilde{\gamma}') \quad \forall \tilde{\gamma} \in \Gamma[x] \}.
\]
Definition

A measure \(\eta \in \mathcal{P}_{m_0}(\Gamma) \) is a MFG equilibrium for \(m_0 \) if

\[
\text{supp}(\eta) \subset \bigcup_{x \in \text{supp}(m_0)} \Gamma^\eta[x].
\]

Theorem

Assume

- \(m_0 \in \mathcal{P}(\mathcal{N}) \)
- \(\ell \in C^0(\mathcal{N}) \)
- \(F[\cdot], G[\cdot] : \mathcal{P}(\mathcal{N}) \to C^0(\mathcal{N}) \) are bounded and continuous.

Then, there exists a MFG equilibrium \(\eta \) for \(m_0 \).
Proof (sketch)
Following the Lagrangian approach of [Cannarsa-Capuani, ’18], we introduce the multivalued map

\[E : \mathcal{P}_{m_0}(\Gamma) \to \mathcal{P}_{m_0}(\Gamma) \]

\[E(\eta) = \left\{ \hat{\eta} \in \mathcal{P}_{m_0}(\Gamma) : \text{supp}(\hat{\eta}) \subset \bigcup_{x \in \text{supp}(m_0)} \Gamma^\eta[x] \right\} \]

and we apply Kakutani fixed point Theorem to obtain a MFG equilibrium. Indeed, there holds

a) \(\forall \eta \in \mathcal{P}_{m_0}(\Gamma), E(\eta) \) is a nonempty set

b) \(\forall \eta \in \mathcal{P}_{m_0}(\Gamma), E(\eta) \) is a convex set

c) the map \(E \) fulfills the closed graph property.
Definition

A couple \((u, m)\) is a **mild solution** to the MFG if there exists a MFG equilibrium \(\eta \in \mathcal{P}_{m_0}(\Gamma)\) such that

- \(m(t) = e_t \# \eta \quad \forall t \in [0, T]\)
- \(u\) is the the **value function** associated to \(\eta\):

\[
\begin{align*}
u(t, x) &= \inf_{\alpha \text{ adm.}} J^\eta(t, x, \alpha).
\end{align*}
\]

Corollary

There exists a mild solution \((u, m)\) to the MFG.
Hamilton-Jacobi problem for u

$$
\begin{cases}
-\partial_t u + \frac{1}{2} |\partial_j u|^2 + \ell = F[m(t)] & (t, x) \in (0, T) \times e_j \\
-\partial_t u + \max_{j \in \text{Inc}_i} \left\{ \frac{1}{2} [(\partial_j u)^-_j]^2 \right\} + \ell = F[m(t)] & (t, v_i) \in (0, T) \times V \\
u(T, x) = G[m(T)](x) & x \in \mathcal{N}.
\end{cases}
$$

Definition (viscosity solution)

u is a **subsolution** (resp., a **supersolution**) if: for all $\varphi \in C^1((0, T) \times \mathcal{N})$ s.t. $u - \varphi$ has a maximum (resp., a minimum) at (t, x), there holds

$$
-\partial_t \varphi(t, x) + \frac{|\partial_j \varphi(t, x)|^2}{2} + \ell(t, x) \leq (\geq) F[m(t)](x) \quad \text{if } x \in e_j
$$

$$
-\partial_t \varphi(t, x) + \max_{j \in \text{Inc}_i} \left\{ \frac{[(\partial_j \varphi(t, x))^-_j]^2}{2} \right\} + \ell(t, x) \leq (\geq) F[m(t)](x) \quad \text{if } x \in V.
$$

u is a **solution** when it is both a sub- and a supersolution.

Proposition

u is the viscosity solution to the Hamilton-Jacobi problem.
Dynamics of a generic player

Inside an edge e_j, the state of a player obeys to

$$x'(t) = v(t), \quad v'(t) = \alpha(t)$$

where the control α is chosen either. Two cases:

- α is chosen in \mathbb{R}
- α is chosen in $[-1, 1]$.

Cost for the generic player

$$J(x, v, t, \alpha) = \int_t^T \left[\frac{|\alpha(s)|^2}{2} - \ell(x(s), v(s), s) + F[m(s)](x(s), v(s)) \right] ds + G[m(T)](x(T), v(T)).$$

Difficulties. Inertia of dynamics, viability set, ...
Thank You!