# An Evans-style result for block designs



Daniel Horsley (Monash University, Australia)

joint work with

Ajani De Vas Gunasekara



Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is *n*.

#### Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is *n*.

Proved for  $n \ge 1111$  by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

#### Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is *n*.

Proved for  $n \ge 1111$  by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

#### **Evans-style result**

One that finds the minimum size of a partial object that can't be extended to a complete object.

#### Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is *n*.

Proved for  $n \ge 1111$  by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

#### **Evans-style result**

One that finds the minimum size of a partial object that **can't** be extended to a complete object. Probably this minimum size will be a function of the order.

#### Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is n.

Proved for  $n \ge 1111$  by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

#### **Evans-style result**

One that finds the minimum size of a partial object that **can't** be extended to a complete object. Probably this minimum size will be a function of the order.

Proving such a result will probably involve:

- ▶ finding examples of uncompletable objects of the claimed minimum size; and
- showing all smaller objects are completable.

#### Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is n.

Proved for  $n \ge 1111$  by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

#### **Evans-style result**

One that finds the minimum size of a partial object that **can't** be extended to a complete object. Probably this minimum size will be a function of the order.

Proving such a result will probably involve:

- ▶ finding examples of uncompletable objects of the claimed minimum size; and
- showing all smaller objects are completable.

#### Conjecture (Evans, 1960)

The minimum number of entries in an **uncompletable**  $n \times n$  partial latin square is n.

Proved for  $n \ge 1111$  by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

#### **Evans-style result**

One that finds the minimum size of a partial object that **can't** be extended to a complete object. Probably this minimum size will be a function of the order.

Proving such a result will probably involve:

- ▶ finding examples of uncompletable objects of the claimed minimum size; and
- showing all smaller objects are completable.

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (*blocks*) in G such that each edge of G is in exactly one block

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (*blocks*) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

A partial (n, k, 1)-design is *completable* if its leave has a  $K_k$ -decomposition.



A partial (13, 4, 1)-design with three blocks

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (*blocks*) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (*blocks*) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (*blocks*) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (*blocks*) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )



 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

A partial (n, k, 1)-design is *completable* if its leave has a  $K_k$ -decomposition.



A completion of the partial (13, 4, 1)-design

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

A partial (n, k, 1)-design is *completable* if its leave has a  $K_k$ -decomposition.



A completion of the partial (13, 4, 1)-design

If *G* has a  $K_k$ -decomposition, it must be  $K_k$ -divisible:  $\binom{k}{2}||E(G)|$  and  $k-1|\deg_G(x) \forall x \in V(G)$ .

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

A partial (n, k, 1)-design is *completable* if its leave has a  $K_k$ -decomposition.



A completion of the partial (13, 4, 1)-design

If *G* has a  $K_k$ -decomposition, it must be  $K_k$ -divisible:  $\binom{k}{2}||E(G)|$  and  $k-1|\text{deg}_G(x) \forall x \in V(G)$ . In particular, if an (n, k, 1)-design exists, *n* must be *k*-admissible:  $\binom{k}{2}|\binom{n}{2}$  and k-1|n-1.

 $K_k$ -decomposition of a graph G: set of copies of  $K_k$  (blocks) in G such that each edge of G is in exactly one block

(n, k, 1)-design:  $K_k$ -decomposition of  $K_n$ 

**partial** (n, k, 1)-design:  $K_k$ -decomposition of a subgraph G of  $K_n$  (its *leave* is  $\overline{G}$ )

A partial (n, k, 1)-design is *completable* if its leave has a  $K_k$ -decomposition.



A completion of the partial (13, 4, 1)-design

If *G* has a  $K_k$ -decomposition, it must be  $K_k$ -divisible:  $\binom{k}{2}||E(G)|$  and  $k-1|\text{deg}_G(x) \forall x \in V(G)$ . In particular, if an (n, k, 1)-design exists, *n* must be *k*-admissible:  $\binom{k}{2}|\binom{n}{2}$  and k-1|n-1.

#### Theorem (Wilson 1975)

Let  $k \ge 3$  be fixed. For all sufficiently large *k*-admissible *n*, an (n, k, 1)-design exists.

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn-Colbourn-Rosa (1981): Certain specific families of partial (n, 3, 1)-designs are completable.

Colbourn-Rosa (1986) and Stinson-Wallis (1987): Results on whether certain specific families of graphs have  $K_3$ -decompositions.

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn-Colbourn-Rosa (1981): Certain specific families of partial (n, 3, 1)-designs are completable.

Colbourn-Rosa (1986) and Stinson-Wallis (1987): Results on whether certain specific families of graphs have  $K_3$ -decompositions.

Gustavsson\* (1991): For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

\* See also Keevash and Glock-Kühn-Lo-Montgomery-Osthus.

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn-Colbourn-Rosa (1981): Certain specific families of partial (n, 3, 1)-designs are completable.

Colbourn-Rosa (1986) and Stinson-Wallis (1987): Results on whether certain specific families of graphs have  $K_3$ -decompositions.

Gustavsson\* (1991): For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

\* See also Keevash and Glock-Kühn-Lo-Montgomery-Osthus.

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn-Colbourn-Rosa (1981): Certain specific families of partial (n, 3, 1)-designs are completable.

Colbourn-Rosa (1986) and Stinson-Wallis (1987): Results on whether certain specific families of graphs have  $K_3$ -decompositions.

Gustavsson\* (1991): For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

\* See also Keevash and Glock-Kühn-Lo-Montgomery-Osthus.

Nenadov-Sudakov-Wagner (2020): For large *n*, a partial (n, k, 1)-design with *b* blocks can be extended to a partial (n, k, 1)-design whose leave has at most  $21k^3\sqrt{bn}$  edges.

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn-Colbourn-Rosa (1981): Certain specific families of partial (n, 3, 1)-designs are completable.

Colbourn-Rosa (1986) and Stinson-Wallis (1987): Results on whether certain specific families of graphs have  $K_3$ -decompositions.

Gustavsson\* (1991): For some small  $\gamma > 0$ , a  $K_k$ -divisible graph *L* of sufficiently large order *n* is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

\* See also Keevash and Glock-Kühn-Lo-Montgomery-Osthus.

Nenadov-Sudakov-Wagner (2020): For large *n*, a partial (n, k, 1)-design with *b* blocks can be extended to a partial (n, k, 1)-design whose leave has at most  $21k^3\sqrt{bn}$  edges.

Lots of results on *embedding* partial (n, k, 1)-designs.
### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all k-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all *k*-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most  $\frac{n-1}{k-1} - k + 1$  blocks is completable.

### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all *k*-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most  $\frac{n-1}{k-1} - k + 1$  blocks is completable.

#### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all *k*-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most  $\frac{n-1}{k-1} - k + 1$  blocks is completable.

Of course, it only makes sense to consider k-admissible values of n.

#### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all *k*-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most  $\frac{n-1}{k-1} - k + 1$  blocks is completable.

Of course, it only makes sense to consider *k*-admissible values of *n*.

For general k, removing the assumption that n is large would involve solving the existence problem for (n, k, 1)-designs.

### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all *k*-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most  $\frac{n-1}{k-1} - k + 1$  blocks is completable.

### Theorem (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. For all *k*-admissible  $n \ge k^2 - k + 1$  there is a partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most  $\frac{n-1}{k-1} - k + 1$  blocks is completable.

An uncompletable partial (n, k, 1)-design with  $\frac{n-1}{k-1} - k + 2$  blocks:



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

• Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

► Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph *L* of sufficiently large order *n* is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

► Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

► Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph *L* of sufficiently large order *n* is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

- Use each edge xy in L[S] with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).
- Exhaust each vertex x in S with a K<sub>k-1</sub>-factor in N(x) (Hajnal-Szemerédi).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

#### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

► Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

• Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

► Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).

- Exhaust each vertex x in S with a K<sub>k-1</sub>-factor in N(x) (Hajnal-Szemerédi).
- The remaining graph on V \ S has minimum degree at least (1 γ)n and so is K<sub>k</sub>-decomposable.



### Theorem (Gustavsson)

Let  $k \ge 3$  be fixed. For some small  $\gamma > 0$ , a  $K_k$ -divisible graph *L* of sufficiently large order *n* is  $K_k$ -decomposable if it has minimum degree at least  $(1 - \gamma)n$ .

### Lemma (De Vas Gunasekara, H)

Let  $k \ge 3$  be fixed. A  $K_k$ -divisible graph L of sufficiently large order n is  $K_k$ -decomposable if  $|E(L)| \ge (1 - \frac{1}{4k}\gamma^2)\binom{n}{2}$  and each edge is in more than  $k\gamma n$  triangles.

• Let 
$$S = \{x \in V(L) : \deg_L(x) \leq (1 - \frac{\gamma}{2})n\}$$
  
and note  $|S| \leq \frac{1}{4k}\gamma n$ .

Use each edge 
$$xy$$
 in  $L[S]$  with a  $K_{k-2}$  in  $N(x) \cap N(y)$  (Turán).

- Exhaust each vertex x in S with a K<sub>k-1</sub>-factor in N(x) (Hajnal-Szemerédi).
- The remaining graph on  $V \setminus S$  has minimum degree at least  $(1 \gamma)n$  and so is  $K_k$ -decomposable.
- This is a refinement of an idea used by Nenadov-Sudakov-Wagner.



A still-bad situation:



A still-bad situation:



#### Lemma (De Vas Gunasekara, H)

Let *H* be a graph on (k - 1)(t + k - 1) vertices formed as the union of at most *t* edge-disjoint copies of  $K_k$ . The vertex set of *H* can be partitioned into independent sets of order k - 1.

A still-bad situation:



#### Lemma (De Vas Gunasekara, H)

Let *H* be a graph on (k - 1)(t + k - 1) vertices formed as the union of at most *t* edge-disjoint copies of  $K_k$ . The vertex set of *H* can be partitioned into independent sets of order k - 1.

Overall proof:

A still-bad situation:



#### Lemma (De Vas Gunasekara, H)

Let *H* be a graph on (k - 1)(t + k - 1) vertices formed as the union of at most *t* edge-disjoint copies of  $K_k$ . The vertex set of *H* can be partitioned into independent sets of order k - 1.

Overall proof:

▶ Use the above lemma to exhaust the lowest degree vertex in *L*.

A still-bad situation:



#### Lemma (De Vas Gunasekara, H)

Let *H* be a graph on (k - 1)(t + k - 1) vertices formed as the union of at most *t* edge-disjoint copies of  $K_k$ . The vertex set of *H* can be partitioned into independent sets of order k - 1.

Overall proof:

- ▶ Use the above lemma to exhaust the lowest degree vertex in *L*.
- For any remaining edge xy, at most about  $\frac{2}{3}$  of the blocks contain x or y.

A still-bad situation:



#### Lemma (De Vas Gunasekara, H)

Let *H* be a graph on (k - 1)(t + k - 1) vertices formed as the union of at most *t* edge-disjoint copies of  $K_k$ . The vertex set of *H* can be partitioned into independent sets of order k - 1.

Overall proof:

- ▶ Use the above lemma to exhaust the lowest degree vertex in *L*.
- For any remaining edge xy, at most about  $\frac{2}{3}$  of the blocks contain x or y.
- ▶ Thus each edge is in many triangles and we can use the lemma from the last slide.

### Theorem

Let  $k \ge 3$  be fixed. For all sufficiently large *k*-admissible *n*, the leave *L* of any partial (n, k, 1)-design has a  $K_k$ -decomposition if  $|E(L)| > \binom{n}{2} - (\frac{n-1}{k-1} - k + 2)\binom{k}{2}$ .

This is sharp for all *k*.

#### Theorem

Let  $k \ge 3$  be fixed. For all sufficiently large *k*-admissible *n*, the leave *L* of any partial (n, k, 1)-design has a  $K_k$ -decomposition if  $|E(L)| > \binom{n}{2} - (\frac{n-1}{k-1} - k + 2)\binom{k}{2}$ .

This is sharp for all k.

For large *n*, we also find the maximum size of  $K_k$ -divisible graph *L* of order *n* that does not have a  $K_k$ -decomposition.

(We do this with and without the assumption that n is k-admissible. The expressions for the maximum size are sharp for infinitely many k.)

#### Theorem

Let  $k \ge 3$  be fixed. For all sufficiently large *k*-admissible *n*, the leave *L* of any partial (n, k, 1)-design has a  $K_k$ -decomposition if  $|E(L)| > \binom{n}{2} - (\frac{n-1}{k-1} - k + 2)\binom{k}{2}$ .

This is sharp for all k.

For large *n*, we also find the maximum size of  $K_k$ -divisible graph *L* of order *n* that does not have a  $K_k$ -decomposition.

(We do this with and without the assumption that n is k-admissible. The expressions for the maximum size are sharp for infinitely many k.)

Each weakening of the assumptions on L requires increasing the lower bound on |E(L)|.
Can a similar result be obtained for (n, k, λ)-designs? How about for simple (n, k, λ)-designs?

- Can a similar result be obtained for (n, k, λ)-designs? How about for simple (n, k, λ)-designs?
- Can our restriction that *n* is large be removed in the cases *k* ∈ {3,4,5} where the existence problem for (*n*,*k*, 1)-designs is completely solved?

- Can a similar result be obtained for (n, k, λ)-designs? How about for simple (n, k, λ)-designs?
- Can our restriction that *n* is large be removed in the cases *k* ∈ {3,4,5} where the existence problem for (*n*,*k*, 1)-designs is completely solved?
- ▶ Very recently, Gruslys and Letzter showed that any graph of order  $n \ge 7$  with more than  $\binom{n}{2} n + 3$  edges has a **fractional**  $K_3$ -decomposition and that this bound is tight. Can similar result be obtained for fractional  $K_4$ -decompositions etc?



# That's all.