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Evans-style?

Conjecture (Evans, 1960)
The minimum number of entries in an uncompletable n× n partial latin square is n.

Proved for n > 1111 by Häggkvist (1978) and completely resolved by Smetaniuk (1981).

Evans-style result
One that finds the minimum size of a partial object that can’t be extended to a complete object.

Probably this minimum size will be a function of the order.

Proving such a result will probably involve:
I finding examples of uncompletable objects of the claimed minimum size; and
I showing all smaller objects are completable.
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Block designs and completions

Kk -decomposition of a graph G: set of copies of Kk (blocks) in G such that each edge of G is
in exactly one block

(n, k, 1)-design: Kk -decomposition of Kn

partial (n, k, 1)-design: Kk -decomposition of a subgraph G of Kn (its leave is G)

A partial (n, k, 1)-design is completable if its leave has a Kk -decomposition.

A partial (13, 4, 1)-design with three blocks

If G has a Kk -decomposition, it must be Kk -divisible:
(k

2
)∣∣|E(G)| and k−1

∣∣degG(x) ∀ x∈V(G).
In particular, if an (n, k, 1)-design exists, n must be k-admissible:

(k
2
)∣∣(n

2
)

and k−1
∣∣n−1.

Theorem (Wilson 1975)
Let k > 3 be fixed. For all sufficiently large k-admissible n, an (n, k, 1)-design exists.
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Existing work on completing block designs

Colbourn (1981): Determining whether a partial (n, 3, 1)-design is completable is NP-complete.

Colbourn-Colbourn-Rosa (1981): Certain specific families of partial (n, 3, 1)-designs are
completable.

Colbourn-Rosa (1986) and Stinson-Wallis (1987): Results on whether certain specific families
of graphs have K3-decompositions.

Gustavsson∗ (1991): For some small γ > 0, a Kk -divisible graph L of sufficiently large order n
is Kk -decomposable if it has minimum degree at least (1− γ)n.
∗ See also Keevash and Glock-Kühn-Lo-Montgomery-Osthus.

Nenadov-Sudakov-Wagner (2020): For large n, a partial (n, k, 1)-design with b blocks can be
extended to a partial (n, k, 1)-design whose leave has at most 21k3√bn edges.

Lots of results on embedding partial (n, k, 1)-designs.
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n−1
k−1 − k + 2 blocks that is not completable.

For all sufficiently large k-admissible n, any partial (n, k, 1)-design with at most n−1
k−1 − k + 1

blocks is completable.

Of course, it only makes sense to consider k-admissible values of n.

For general k, removing the assumption that n is large would involve solving the existence
problem for (n, k, 1)-designs.
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Proof overview
Theorem (Gustavsson)
Let k > 3 be fixed. For some small γ > 0, a Kk -divisible graph L of sufficiently large order n is
Kk -decomposable if it has minimum degree at least (1− γ)n.

Lemma (De Vas Gunasekara, H)
Let k > 3 be fixed. A Kk -divisible graph L of sufficiently large order n is Kk -decomposable if
|E(L)| > (1− 1

4k γ
2)
(n

2
)

and each edge is in more than kγn triangles.

I Let S = {x ∈ V(L) : degL(x) 6 (1− γ
2 )n}

and note |S| 6 1
4k γn.

I Use each edge xy in L[S] with a Kk−2 in
N(x) ∩ N(y) (Turán).

I Exhaust each vertex x in S with a
Kk−1-factor in N(x) (Hajnal-Szemerédi).

I The remaining graph on V \ S has minimum
degree at least (1− γ)n and so is
Kk -decomposable.

I This is a refinement of an idea used by
Nenadov-Sudakov-Wagner.

S

V \ S
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x

N(x) ∩ N(y)
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Nenadov-Sudakov-Wagner.

S

V \ S

y

x

N(x) ∩ N(y)

x

N(x)



Proof overview

A still-bad situation:

t blocks on (k − 1)(t + k − 1) vertices

Lemma (De Vas Gunasekara, H)
Let H be a graph on (k − 1)(t + k − 1) vertices formed as the union of at most t edge-disjoint
copies of Kk . The vertex set of H can be partitioned into independent sets of order k − 1.

Overall proof:
I Use the above lemma to exhaust the lowest degree vertex in L.
I For any remaining edge xy, at most about 2

3 of the blocks contain x or y.
I Thus each edge is in many triangles and we can use the lemma from the last slide.
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Our results

Theorem
Let k > 3 be fixed. For all sufficiently large k-admissible n, the leave L of any partial
(n, k, 1)-design has a Kk -decomposition if |E(L)| >

(n
2
)
− ( n−1

k−1 − k + 2)
(k

2
)

.

This is sharp for all k.

For large n, we also find the maximum size of Kk -divisible graph L of order n that does not have
a Kk -decomposition.
(We do this with and without the assumption that n is k-admissible. The expressions for the
maximum size are sharp for infinitely many k.)

Each weakening of the assumptions on L requires increasing the lower bound on |E(L)|.



Our results

Theorem
Let k > 3 be fixed. For all sufficiently large k-admissible n, the leave L of any partial
(n, k, 1)-design has a Kk -decomposition if |E(L)| >

(n
2
)
− ( n−1

k−1 − k + 2)
(k

2
)

.

This is sharp for all k.

For large n, we also find the maximum size of Kk -divisible graph L of order n that does not have
a Kk -decomposition.
(We do this with and without the assumption that n is k-admissible. The expressions for the
maximum size are sharp for infinitely many k.)

Each weakening of the assumptions on L requires increasing the lower bound on |E(L)|.



Our results

Theorem
Let k > 3 be fixed. For all sufficiently large k-admissible n, the leave L of any partial
(n, k, 1)-design has a Kk -decomposition if |E(L)| >

(n
2
)
− ( n−1

k−1 − k + 2)
(k

2
)

.

This is sharp for all k.

For large n, we also find the maximum size of Kk -divisible graph L of order n that does not have
a Kk -decomposition.
(We do this with and without the assumption that n is k-admissible. The expressions for the
maximum size are sharp for infinitely many k.)

Each weakening of the assumptions on L requires increasing the lower bound on |E(L)|.



Our results

Theorem
Let k > 3 be fixed. For all sufficiently large k-admissible n, the leave L of any partial
(n, k, 1)-design has a Kk -decomposition if |E(L)| >

(n
2
)
− ( n−1

k−1 − k + 2)
(k

2
)

.

This is sharp for all k.

For large n, we also find the maximum size of Kk -divisible graph L of order n that does not have
a Kk -decomposition.
(We do this with and without the assumption that n is k-admissible. The expressions for the
maximum size are sharp for infinitely many k.)

Each weakening of the assumptions on L requires increasing the lower bound on |E(L)|.



Some questions

I Can a similar result be obtained for (n, k, λ)-designs? How about for simple
(n, k, λ)-designs?

I Can our restriction that n is large be removed in the cases k ∈ {3, 4, 5} where the
existence problem for (n, k, 1)-designs is completely solved?

I Very recently, Gruslys and Letzter showed that any graph of order n > 7 with more than(n
2
)
− n + 3 edges has a fractional K3-decomposition and that this bound is tight. Can

similar result be obtained for fractional K4-decompositions etc?
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