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A completion of the partial (13, 4, 1)-design
If G has a Ki-decomposition, it must be Kj-divisible: (g) |IE(G)| and k—1|degg(x) V x € V(G).

In particular, if an (n, k, 1)-design exists, n must be k-admissible: (’2‘) | (5) and k—1 [n—1.

Theorem (Wilson 1975)
Let k > 3 be fixed. For all sufficiently large k-admissible n, an (n, k, 1)-design exists.
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Nenadov-Sudakov-Wagner (2020): For large n, a partial (n, k, 1)-design with b blocks can be
extended to a partial (n, k, 1)-design whose leave has at most 21k3v/bn edges.

Lots of results on embedding partial (n, k, 1)-designs.
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An uncompletable partial (n, k, 1)-design with % — k + 2 blocks:
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Proof overview

Theorem (Gustavsson)

Let k > 3 be fixed. For some small v > 0, a Ki-divisible graph L of sufficiently large order n is
Kk-decomposable if it has minimum degree at least (1 — v)n.

Lemma (De Vas Gunasekara, H)

Let k > 3 be fixed. A Ki-divisible graph L of sufficiently large order n is Kx-decomposable if
IE(L)| > (1 — 2+?)(3) and each edge is in more than k~n triangles.

> LetS={xec V(L):deg,(x) <(1—3)n}
and note [S| < Jyn.

> Use each edge xy in L[S] with a Kx_5 in
N(x) N N(y) (Turén).

»> Exhaust each vertex x in S with a
Ky _4-factor in N(x) (Hajnal-Szemerédi).

» The remaining graph on V \ S has minimum
degree at least (1 — v)n and so is
Ky-decomposable. S

> This is a refinement of an idea used by
Nenadov-Sudakov-Wagner.
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Proof overview
A still-bad situation:

C_ D

t blocks on (k — 1)(t + k — 1) vertices

Lemma (De Vas Gunasekara, H)

Let H be a graph on (k — 1)(t + k — 1) vertices formed as the union of at most t edge-disjoint
copies of K. The vertex set of H can be partitioned into independent sets of order k — 1.

Overall proof:
»> Use the above lemma to exhaust the lowest degree vertex in L.

> For any remaining edge xy, at most about % of the blocks contain x or y.
» Thus each edge is in many triangles and we can use the lemma from the last slide.
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Our results

Theorem
Let kK > 3 be fixed. For all sufficiently large k-admissible n, the leave L of any partial
(n, k, 1)-design has a Kj-decomposition if [E(L)| > (3) — (2=% — k +2)(§).

This is sharp for all k.

For large n, we also find the maximum size of Ki-divisible graph L of order n that does not have
a Ky -decomposition.

(We do this with and without the assumption that n is k-admissible. The expressions for the
maximum size are sharp for infinitely many k.)

Each weakening of the assumptions on L requires increasing the lower bound on |E(L)|.
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Some questions

» Can a similar result be obtained for (n, k, A)-designs? How about for simple
(n, k, X\)-designs?

» Can our restriction that n is large be removed in the cases k € {3, 4,5} where the
existence problem for (n, k, 1)-designs is completely solved?

» Very recently, Gruslys and Letzter showed that any graph of order n > 7 with more than
(5) — n+ 3 edges has a fractional K3-decomposition and that this bound is tight. Can
similar result be obtained for fractional K4-decompositions etc?
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